簡易檢索 / 詳目顯示

研究生: 李哲賢
Li, Che-Hsien
論文名稱: 奈米碳管矩陣結構之低電場調控表面張力
Low Electric Field Modulated Surface Tension of Aligned Carbon Nanotube Arrays
指導教授: 徐文光
Hsu, Wen-Kuang
口試委員: 洪毓玨
黃淑娟
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 44
中文關鍵詞: 奈米碳管電濕潤表面張力
外文關鍵詞: nanotube, electro-wetting, surface tension
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分成兩個部分,第一部分利用疏水性的陣列奈米碳管作為電濕潤的固體表面,藉由施加平行電壓產生電雙層及電泳,造成固-氣間表面張力上升和固-液間表面張力下降,導致液滴與界面的接觸角下降,達到電濕潤的效果。
    論文第二部分則是探討不同離子濃度對電濕潤的影響,藉著施加相同電壓時,不同離子濃度的情況下,液滴的接觸角會產生不同變化,因此,本節主要討論藉由離子的存在與否與濃度變化,來控制液體的電濕潤現象。


    This thesis is divided into two parts. First, the field modulated surface tension of aligned carbon nanotubes (aligned-CNTs) is discussed and demonstrated. Electric fields are found capable of changing contact angle of liquid droplet on surfaces of aligned carbon nanotube arrays, and the surface tension is calculated according to the experimental data using the Owens-Wendt model and Young’s equations.
    Second, we discuss the effect of different ion concentrations on electro-wetting. By applying the same voltage, the contact angle of droplet varies with different ion concentrations, and the relationship between droplet contact angle and ions is also discussed.

    中文摘要 ............................................... I 英文摘要 ...............................................II 目錄 ..................................................III 圖目錄 .................................................. V 表目錄 ............................................... VIII 第一章 文獻回顧 ....................................... 1 1-1 奈米碳管的簡介 ...................................... 1 1-2 奈米碳管的表面結構與電性 ........................... 2 1-2-1 奈米碳管的基本結構 ............................... 2 1-2-2 奈米碳管的基本電性 ............................... 3 1-2-3 奈米碳管的表面特性 ............................... 7 1-3 奈米碳管的合成方法 ................................. 8 1-4 電濕潤(Electro-wetting)簡介 ....................... 12 1-4-1 表面張力 ........................................ 12 1-4-2 接觸角與Young’s equation ....................... 13 1-4-3 電雙層(EDL)造成電濕潤原理 ....................... 15 1-4-4 介電層效應(EWOD)造成電濕潤原理 .................. 18 第二章 實驗動機 ...................................... 20 第三章 實驗步驟 ...................................... 21 3-1 實驗裝置及準備 .................................... 21 3-1-1 實驗儀器準備 .................................... 21 3-1-2 試片製備 ........................................ 21 3-1-3 實驗裝置圖 ...................................... 23 3-2 實驗步驟 .......................................... 24 3-2-1 施加電壓對電濕潤的影響 .......................... 24 3-2-2 離子濃度對電濕潤的影響 .......................... 25 第四章 結果與討論 .................................... 26 4-1 利用接觸角計算表面張力- Owens-Wendt model ......... 26 4-2 施加電壓對電濕潤的影響 ............................ 27 4-2-1 施加電壓對接觸角變化的實驗結果 .................. 27 4-2-2 施加電壓對接觸角變化的機制討論 .................. 34 4-3 離子濃度對電濕潤的影響 ............................ 35 4-3-1 不同離子濃度對接觸角變化的實驗結果 .............. 35 4-3-2 去離子水與加有離子溶液的比較 .................... 39 第五章 結論 .......................................... 41 Future work .......................................... 41 References .......................................... 42

    [1] Ijima S, Ichihashi T, Nature.363, 603 (1993).
    [2] Carbon Nanotubes, M. Dresselhaus, G. Dresselhaus, and
    Ph. Avouris, Eds , Springer-Verlag , Berlin (2001).
    [3] Saito R, Dresselhaus MS, Dresselhaus G. Physical
    Properties of Carbon Nanotubes. Imperial College9(1998).
    [4] Dresselhaus MS, Dresselhaus G, Eklunk PC. Science of
    Fullerenes & Carbon Nanotubes. San Diego:Academic
    Press (1996). Dresselhaus MS, Eklund PC, Adv. Phys. 49,
    705 (2000).
    [5] R. Waser, Nanoelectronics and Information Technology,
    Wiley-VCH, (2003)
    [6] N. Hamada, S.-I. Swada, A. Oshiyama, Phys. Rev. Lett.
    68, 1579 (1992).
    [7] 金子克美.固體物理。1992, 27:403 (2001).
    [8] L. Ci , J. Wei, B. Wei, J. Liang, C. Xu and D. Wu,
    Carbon 39, 329 (2001).
    [9] R. Kamalakaran, M. Terrones, T. Seeger, Ph. Kohler-
    Redlich, M. hle, Y. A. Kim, T. Hayashi, and M. Endo,
    Appl. Phys. Lett. 77, 3385 (2000).
    [10] X. Zhang, A. Cao, B. Wei, Y. Li, J. Wei, C. Xu and D.
    Wu, Chem. Phys. Lett. 362, 285 (2002)
    [11] Y.H. Lin, “The electric-optic-mechanical properties
    of carbon nanotube”, National Tsing Hua University
    (2011)
    [12] M. G. Lippmann, Ann, Chem. Phys. 5, 494 (1875)
    [13] E. Dujardin, T.W. Ebbesen, H. Hiura, K. Tanigaki,
    Science. 265, 1850(1994)
    [14] Hyejin Moon and Sung Kwon Cho, J. Appl. Phys. 92, 7
    (2002)
    [15] J. Lee, H. Moon, J. Fowler, T. Schoellhammer, and C.-
    J. Kim, Sens. and actua. A 95, 259 (2002)
    [16] T. B. Jones, M. Gunji, M. Washizu, and M. J. Feldman,
    J. Appl. Phys. 89, 1441 (2001)
    [17] M. Gunji and M. Washizu, J. Phys. D: Appl. Phys. 38,
    2417 (2005)
    [18] H. Li, X. Wang, Y. Song, Y. Liu, Q. Li, L. Jiang and
    D. Zhu, Angew. Chem. Int. Ed. 40, 1743 (2001)
    [19] Lingbo Zhu, Jianwen Xu, Yonghao Xiu, Yangyang Sun,
    Dennis W. Hess, Ching Ping Wong, J. Phys. Chem. B110,
    15945(2006)
    [20] Bhalchandra Kakade, Rutvik Mehta, Apurva Durge, Sneha
    Kulkarni, Vijayamohanan Pillal, Nano Lett. 8, 2693
    (2008)
    [21] Andrews R, Jacques D, Rao AM, Derbyshire F, Qian D,
    Fan X, Dickey EC, Chen J, Chem. Phys. Lett. 303,467
    (1999)
    [22] Andrews R, Jacques D, Qian DL, Rantell T, Accounts of
    Chemical Research 35,1008(2002)
    [23] W.L. Fang, H.Y. Chu, W.K. Hsu, T.W. Cheng, N.H. Tai,
    Adv. Mater. 17,2987(2005)
    [24] Y. F. Li, C.I Hung, H. F. Kuo, S.H. Syue, W.K. Hsu,
    S.L. Kuo, S.C. Huang, J. Mater. Chem. 19,7694(2009)
    [25] D. K. Owen, R. C. Wendt, J. appl. Poly. Sci. 13, 1741
    (1969)
    [26] Arthur W. Adamson, Alice P. Gast. Physical Chemistry of
    Surfaces(6th ed.). New York, Wiley 183~192(1997)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE