簡易檢索 / 詳目顯示

研究生: 陳柏叡
Chen, Po-Jui
論文名稱: 魔角石墨烯的非傳統超導相
Unconventional superconductivity in magic angle twisted bilayer graphene
指導教授: 牟中瑜
Mou, Chung-Yu
口試委員: 仲崇厚
Chung, Chung-Hou
張明哲
Chang, Ming-Che
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 60
中文關鍵詞: 魔角石墨烯超導現象BKT 相變超流密度
外文關鍵詞: magic angle twisted bialyer graphene, superconductivity, BKT transition, superfluid density
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 扭角石墨烯的超導機制一直是凝態物理中的未解之謎。在本論文中,我的目標是找出扭角石墨烯中可能存在的非傳統超導相。我們特別關注由隨機相位近似修正的排斥交互作用所引起的超導。藉由平均場論,我們證明手徵p+ip和手徵d+id 的超導配對都可以存在。更甚者,我們也分析這些超導配對如何隨溫度及由化學能決定的電子數量和彼此競爭。我們可以證明平均場的相圖起源於p波,次晶格之間的單重態,同層配對 和p/d 波,同次晶格,同層配對的競爭關係。我們的平均場論為系統處在超導相時的庫柏對波函數提供完整的描述。

    在了解所有可能的配對後,我們需要計算由Kosterlitz-Thouless 相變決定的臨界溫度。藉由線性響應理論且只考慮近平坦能帶,我們在化學位能-配對強度的參數空間中計算傳統項幾何項的貢獻。我們區分出在化學位能-配對強度的參數空間裡被傳統項或幾何項主導的區域。這些結果不只為對實驗有助益的超導臨界溫度給出定量估計外,也顯示在不同的參數範圍內,超流密度的物理起源可能會有所差別。


    The mechanism of superconductivity observed in twisted bilayer graphene remains an unsolved puzzle in condensed matter physics. In this thesis, we aim to find out possible unconventional superconducting phases in twisted bilayer graphene . Specifically, we focus on superconductivity arising from the repulsive interaction corrected by random phase approximation (RPA). In the mean field theory, we show that the chiral p+ip and chiral d+id superconducting pairing are dominant superconducting instabilities. Furthermore, we analyze how these pairing symmetries compete with each other by changing temperature and number of electrons through the chemical potential. It is shown that the mean-field phase diagram results from the competition between p/d-wave intra-sublattice/intra-layer pairing and p-wave inter-sublattice(singlet)/intra-layer pairing. Our mean field theory provides a compact description of the Cooper pair wavefunction when the system is superconducting.

    Knowing all possible mean-field pairing states, in 2D, we need to compute the superfluid density to obtain the superconducting transition temperature determined by the Kosterlitz-Thouless transition. By employing the linear response theory and focusing on flat bands, we evaluate the conventional and geometrical contributions to the superfluid density in the chemical potential - pairing amplitude space. Regions in the chemical potential - pairing amplitude space that are dominated either by geometric term or conventional terms are identified. These results not only provide the estimation for superconducting transition temperatures useful for experiments, but also reveal different physical origin of superconducting transitions in different parameter region.

    Contents Abstract (Chinese) I Abstract II Acknowledgements III Contents IV List of Tables VI List of Figures VII 1 Introduction 1 2 Theoretical model for twisted bilayer graphene 4 2.1 Derivation for the continuum model . . . . . . . . . . . . . . . . . . 4 2.2 Energy spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Random phase approximation and effective interaction 12 3.1 Random phase approximation(RPA) and effective interacting potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4 Superconducting pairing in magic angle twisted bilayer graphene 16 4.1 Mean field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2 Pseudospin structure of cooper pair matrix . . . . . . . . . . . . . . 17 4.2.1 Projecting to energy basis . . . . . . . . . . . . . . . . . . . 20 4.3 Gap function and projected interaction . . . . . . . . . . . . . . . . 24 4.4 result of mean field theory . . . . . . . . . . . . . . . . . . . . . . . 25 5 Superfluid density and BKT transition in twisted bilayer graphene 30 5.1 Correlation function and the universal relation . . . . . . . . . . . . 31 5.2 Determination of BKT transition temperature . . . . . . . . . . . . 32 5.3 Superfluid density . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6 Conclusion and outlook 42 A The singlet triplet Decomposition 44 B The mean field gap equations 47 C Some exact formulism for intra-sublattice/intra-layer pairing 54 Bibliography 58

    [1] Yuan Cao, Valla Fatemi, Shiang Fang, Kenji Watanabe, Takashi Taniguchi,
    Efthimios Kaxiras, and Pablo Jarillo-Herrero. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556(7699):43–50, 2018.
    [2] Xiaobo Lu, Petr Stepanov, Wei Yang, Ming Xie, Mohammed Ali Aamir, Ipsita Das, Carles Urgell, Kenji Watanabe, Takashi Taniguchi, Guangyu Zhang,
    Adrian Bachtold, Allan H. MacDonald, and Dmitri K. Efetov. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene.
    Nature, 574(7780):653–657, 2019.
    [3] Xiaoxue Liu, Zhi Wang, K. Watanabe, T. Taniguchi, Oskar Vafek, and J. I. A.
    Li. Tuning electron correlation in magic-angle twisted bilayer graphene using
    coulomb screening. Science, 371(6535):1261–1265, 2021.
    [4] Matthew Yankowitz, Shaowen Chen, Hryhoriy Polshyn, Yuxuan Zhang,
    K. Watanabe, T. Taniguchi, David Graf, Andrea F. Young, and Cory R.
    Dean. Tuning superconductivity in twisted bilayer graphene. Science,
    363(6431):1059–1064, 2019.
    [5] Noah F. Q. Yuan and Liang Fu. Model for the metal-insulator transition in
    graphene superlattices and beyond. Physical Review B, 98(4):045103, 2018.
    PRB.
    [6] Hoi Chun Po, Liujun Zou, Ashvin Vishwanath, and T. Senthil. Origin of
    mott insulating behavior and superconductivity in twisted bilayer graphene.
    Physical Review X, 8(3):031089, 2018. PRX.
    59
    [7] Pawel Potasz, Ming Xie, and A. H MacDonald. Exact diagonalization for magic-angle twisted bilayer graphene. Physical Review Letters,
    127(14):147203, 2021. PRL.
    [8] Gal Shavit, Erez Berg, Ady Stern, and Yuval Oreg. Theory of correlated
    insulators and superconductivity in twisted bilayer graphene. Physical Review
    Letters, 127(24):247703, 2021. PRL.
    [9] Nick Bultinck, Eslam Khalaf, Shang Liu, Shubhayu Chatterjee, Ashvin Vishwanath, and Michael P. Zaletel. Ground state and hidden symmetry of magicangle graphene at even integer filling. Physical Review X, 10(3):031034, 2020.
    PRX.
    [10] Fengcheng Wu, A. H MacDonald, and Ivar Martin. Theory of phononmediated superconductivity in twisted bilayer graphene. Physical Review
    Letters, 121(25):257001, 2018. PRL.
    [11] Biao Lian, Zhijun Wang, and B. Andrei Bernevig. Twisted bilayer graphene:
    A phonon-driven superconductor. Physical Review Letters, 122(25):257002,
    2019. PRL.
    [12] Girish Sharma, Maxim Trushin, Oleg P. Sushkov, Giovanni Vignale, and
    Shaffique Adam. Superconductivity from collective excitations in magicangle twisted bilayer graphene. Physical Review Research, 2(2):022040, 2020.
    PRRESEARCH.
    [13] Cyprian Lewandowski, Debanjan Chowdhury, and Jonathan Ruhman. Pairing in magic-angle twisted bilayer graphene: Role of phonon and plasmon
    umklapp. Physical Review B, 103(23):235401, 2021. PRB.
    [14] Yi-Zhuang You and Ashvin Vishwanath. Superconductivity from valley fluctuations and approximate so(4) symmetry in a weak coupling theory of twisted
    bilayer graphene. npj Quantum Materials, 4(1):16, 2019.
    [15] Fabian Schrodi, Alex Aperis, and Peter M. Oppeneer. Prominent cooper pairing away from the fermi level and its spectroscopic signature in twisted bilayer
    graphene. Physical Review Research, 2(1):012066, 2020. PRRESEARCH.
    60
    [16] Cenke Xu and Leon Balents. Topological superconductivity in twisted multilayer graphene. Physical Review Letters, 121(8):087001, 2018. PRL.
    [17] Cheng-Cheng Liu, Li-Da Zhang, Wei-Qiang Chen, and Fan Yang. Chiral spin
    density wave and d + id superconductivity in the magic-angle-twisted bilayer
    graphene. Physical Review Letters, 121(21):217001, 2018. PRL.
    [18] J. Gonz´alez and T. Stauber. Kohn-luttinger superconductivity in twisted
    bilayer graphene. Physical Review Letters, 122(2):026801, 2019. PRL.
    [19] Cyprian Lewandowski, Debanjan Chowdhury, and Jonathan Ruhman. Pairing in magic-angle twisted bilayer graphene: Role of phonon and plasmon
    umklapp. Phys. Rev. B, 103:235401, Jun 2021.
    [20] Tommaso Cea and Francisco Guinea. Coulomb interaction, phonons, and
    superconductivity in twisted bilayer graphene. Proceedings of the National
    Academy of Sciences, 118(32):e2107874118, 2021.
    [21] Rafi Bistritzer and Allan H. MacDonald. Moirxe9; bands in twisted
    double-layer graphene. Proceedings of the National Academy of Sciences,
    108(30):12233–12237.
    [22] Hidetoshi Nishimori. Elements of phase transitions and critical phenomena.
    2011.
    [23] Long Liang, Tuomas I. Vanhala, Sebastiano Peotta, Topi Siro, Ari Harju,
    and P¨aivi T¨orm¨a. Band geometry, berry curvature, and superfluid weight.
    Physical Review B, 95(2):024515, 2017. PRB.
    [24] A. Julku, T. J. Peltonen, L. Liang, T. T. Heikkil¨a, and P. T¨orm¨a. Superfluid
    weight and berezinskii-kosterlitz-thouless transition temperature of twisted
    bilayer graphene. Physical Review B, 101(6):060505, 2020. PRB.

    QR CODE