研究生: |
陳信志 Chen, Sin Jhih |
---|---|
論文名稱: |
降雨機率預測:輔助變數之彙整、篩選與結構辨識 Integrating and Screening Auxiliary Information for Multi-step Rainfall Prediction in Logistic Regression |
指導教授: |
徐南蓉
Hsu, Nan Jung |
口試委員: |
蔡恆修
Tsai, Heng Hsiu 張雅梅 Chang, Ya Mei |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | 多步降雨預測 、羅吉斯迴歸 、boosting |
外文關鍵詞: | multi-step forecast, logistic regression, boosting |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用中央氣象局的公開資料,同時整合測站降雨資訊及與降雨
趨勢息息相關的衛星雲圖和雷達回波圖資料,進行高解析度之降雨機率空
間預測。分析方法採用boosting 來篩選合適的時空資訊,並利用羅吉斯迴
歸建構空間降雨機率預測模型,最終建立台灣地區的降雨機率預測平面。
此外,將會利用ROC 曲線探討此模型對於未來6 小時的預測能力,結果
顯示,對於不同步數的預測,其模型選取的變數存在一些潛在的趨勢,在
降雨與否的預測上,引入boosting 後,模型複雜度節省80%、運算時間節
省88%,而預測能力不減反增,平均而言,AUC 約能提升0.04。最終,三
步以內的預測模型,AUC 可達到0.7 以上,擁有不錯的預測能力,而四步
以上的預測模型,預測能力則不佳。
Making use of the open data from the Central Weather Bureau in Taiwan, this
thesis develops a statistical model for multi-step rainfall probability forecasts. The
data considered include the rainfall gauge data at the monitoring sites, the satellite
cloud image and the radar reflectivity images around the Taiwan area, which
are naturally informative to the rainfall tendency. The data are further integrated
according to various spatial and temporal resolutions and summarized into different
statistic measures. Via a boosting technique, most effective spatial-temporal
summaries with predictive abilities (possibly with nonlinear effect) are explored
in a logistic regression framework. Accordingly, the spatial forecasting map for
rainfall probability can be generated. The proposed methodology is implemented
to the hourly data collected from May 19 to May 31 in 2015. The empirical result
shows that the proposed prediction model with integrated spatial and temporal
variables provides reasonable good multi-step rainfall probability forecasts for 3
hours in advance (with AUC greater than 0.7). In particular, the complexity of
selected model is reduced to 20% in total variables and saves about 88% of computational
time after introducing the boosting scheme in the modeling procedure,
while the reduced model remains a similar forecasting ability evaluated by AUC.
參考文獻
[1] Applequist, S., Gahrs, G. E., Pfeffer, R.L. and Niu, X.-F.(2002).
Comparison of Methodologies for Probabilistic Quantitative Precipitation
Forecasting. Weather and Forecasting. 17 783-799.
[2] Berrocal, V.J., Raftery, A. E. and Gneiting, T.(2008). Probabilistic
Quantitative Precipitation Field Forecasting Using A Two-Stage Spatial
Model. The Annals of Applied Statistics. 2 1170-1193.
[3] Chandler, R. E. and Wheater, H. S.(2002). Analysis of Rainfall Variability
Using Generalized Linear Models: A Case Study From the West of Ireland.
Water Resources Research. 38(10).
[4] Friedman, J. H.(2001). Greedy Function Approximation: A Gradient
Boosting Machine. The Annals of Statistics. 29 1189-1232.
[5] Hall, T., Brooks, H. E. and Doswell, C. A.(1998). Precipitation Forecasting
Using a Neural Network. Weather and Forecasting. 14 338-345.
[6] Glahn, H. R. and Lowry, D. A.(1972). The Use of Model Output Statistics
(MOS) in Objective Weather Forecasting. Journal of Applied Meteorology
and Climatology. 11 1203-1211.
[7] Hosmer, D. W.and Lemeshow, S.(2000). Applied Logistic Regression(2nd
ed.). New York: John Wiley and Sons, Inc.
[8] Mason, S. J.(1998). Seasonal Forecasting of South African Rainfall Using A
Non-Linear Discriminant Analysis Model. International Journal of
Climatology. 18 147-164.
35
[9] Sideris, I. V., Gabella, M., Erdin, R. and Germann, U.(2014). Real-Time
Radar–Rain-Gauge Merging Using Spatio-Temporal Co-Kriging with
External Drift in the Alpine Terrain of Switzerland. Quarterly Journal of
the Royal Meteorological Society. 140 1097-1111.