簡易檢索 / 詳目顯示

研究生: 劉文峰
Wen-Fong Liu
論文名稱: 利用紅外光光譜儀探討真空中水氣吸附現象
The Study of Water Adsorption in Vacuum using FT-IR
指導教授: 陳俊榮
June-Rong Chen
吳見明
Chien-Ming Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 43
中文關鍵詞: 偏振調制水氣吸附
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基於光彈偏振調制的方法可以排除空間中氣體的干擾,本實驗利用紅外光單光束光譜以及偏振調制紅外光光譜的分析方法,分別觀察空間中以及樣品表面的水氣訊號,以探討真空中水氣吸附的行為以及絕熱膨脹效應的影響。
    本論文研究包含(1)水氣訊號的判斷,(2)水氣吸附行為探討,以及(3)絕熱膨脹效應探討等三大主題。實驗中首先測量不鏽鋼及鋁合金樣品背景值訊號,並分辨重水與輕水的水氣表面吸附訊號,作為其它後續實驗判斷水氣吸附的重要依據。在水氣吸附行為探討實驗中,觀察到曝入的水氣氣壓超過11 mbar後,表面的水氣訊號強度將快速的增加。曝入氮氣後,氮氣分子會撞離樣品表面的水氣,而轉移到腔體空間中,造成樣品表面水氣訊號降低,而空間中的水氣訊號增加。然而,實驗中也發現曝入氮氣後,表面吸附的水氣訊號及空間中的水氣訊號,二者皆呈現增加的現象,其成因可能是曝氮氣時所趕出的部分水氣集中於某處,而於曝氣之後再放出的結果。另外,本實驗亦研究了絕熱膨脹作用對於表面水氣吸附之影響,實驗發現水氣混合氮氣抽氣後,表面水氣增加,且由於分析系統的特殊性,可確定在抽氣8秒後即可觀察到因絕熱膨脹作用表面水氣增加的現象。


    第一章、 引言---------------------------------------------------------------------1 第二章、 原理---------------------------------------------------------------------5 2.1. 真空中的吸附-----------------------------------------------------5 2.2. 絕熱膨脹原理-----------------------------------------------------5 2.3. 紅外光譜儀分析原理--------------------------------------------6 2.3.1. 紅外光吸收法----------------------------------------------6 2.3.2. 偏振光的掠角入射----------------------------------------7 2.3.3. 紅外光的偏振調制----------------------------------------9 第三章、 實驗系統與步驟 ---------------------------------------------------13 3.1. 實驗系統---------------------------------------------------------13 3.1.1. 傅立葉紅外光譜-----------------------------------------13 3.1.2. 偏振調制光路--------------------------------------------14 3.1.3. 真空系統--------------------------------------------------15 3.1.4. 氣體淨化系統--------------------------------------------17 3.2. 樣品準備---------------------------------------------------------17 3.2.1. 化學清洗--------------------------------------------------18 3.2.2. 臭氧水清洗-----------------------------------------------18 3.3. 實驗步驟---------------------------------------------------------19 3.3.1. 光彈偏振調制儀校正-----------------------------------19 3.3.2. 水氣吸附實驗--------------------------------------------20 3.3.3. 絕熱膨脹實驗--------------------------------------------21 第四章、 實驗結果與討論----------------------------------------------------23 4.1. 水氣訊號判斷---------------------------------------------------23 4.2. 水氣吸附行為探討---------------------------------------------25 4.2.1. 表面水氣附著量與曝氣氣壓及時間之關係--------25 4.2.2. 曝水後氮氣之吹淨作用--------------------------------27 4.3. 絕熱膨脹效應探討---------------------------------------------30 第五章、 討論--------------------------------------------------------------------32 5.1. 水氣的吸附與釋氣過程探討---------------------------------32 A. 曝水氣及其他氣體時對水氣吸收與釋氣之作用------32 B. 抽氣時水氣之吸附與釋氣作用---------------------------33 5.2. 偏振調制紅外光相對強度與表面吸附分子層之關係---34 5.3. 實驗誤差探討與實驗系統改善------------------------------36 第六章、 結論--------------------------------------------------------------------38 參考文獻--------------------------------------------------------------------------40 圖-----------------------------------------------------------------------------------44 圖目錄 圖2-1、物理吸附與化學吸附位能曲線示意圖-----------------------------44 圖2-2、不同尺寸熱電偶溫度計所量測之溫度下降曲線圖--------------45 圖2-3、紅外光在大氣中的單光束光譜--------------------------------------46 圖2-4、偏振光掠角入射後的相位變化--------------------------------------47 圖2-5、表面吸附分子偶極的垂直與水平分佈-----------------------------48 圖2-6、光彈偏振調制儀內部圖-----------------------------------------------49 圖2-7、紅外光通過硒化鋅晶體時的延遲現象-----------------------------50 圖2-8、(a)半波延遲示意圖(b)硒化鋅晶體調制示意圖-----------------51 圖2-9、標準片光譜圖-----------------------------------------------------------52 圖3-1、紅外光光路徑-----------------------------------------------------------53 圖3-2、麥克森干涉儀-----------------------------------------------------------54 圖3-3、偏振調制光路-----------------------------------------------------------55 圖3-4、光彈偏振調制儀--------------------------------------------------------56 圖3-5、硒化鋅晶體穿透率-----------------------------------------------------57 圖3-6、實驗系統-----------------------------------------------------------------58 圖3-7、曝氣管路-----------------------------------------------------------------59 圖3-8、分析腔上視圖-----------------------------------------------------------60 圖3-9、氣體淨化系統流程-----------------------------------------------------61 圖3-10、光彈偏振調制儀校正------------------------------------------------62 圖3-11、標準片光譜------------------------------------------------------------63 圖4-1、鋁合金表面背景值紅外光光譜--------------------------------------64 圖4-2、臭氧水清洗前後鋁合金表面背景值紅外光光譜比較-----------65 圖4-3、鋁合金樣品曝輕水及重水後表面紅外光光譜--------------------66 圖4-4、不鏽鋼與鋁合金曝水前後表面紅外光光譜-----------------------67 圖4-5、曝入氮氣後不鏽鋼與鋁合金表面紅外光光譜--------------------68 圖4-6、樣品表面重水訊號強度與重水氣壓關係圖-----------------------69 圖4-7、不同重水曝氣氣壓下之表面紅外光光譜--------------------------70 圖4-8、鋁合金樣品表面輕水訊號強度與輕水曝氣氣壓關係圖--------71 圖4-9、表面水氣訊號強度與水氣曝氣氣壓關係圖-----------------------72 圖4-10、表面水氣訊號強度與重水曝氣氣壓關係圖---------------------73 圖4-11、曝水後再曝氮氣表面水氣訊號強度隨時間變化圖------------74 圖4-12、曝水12 mbar再曝氮氣,不同時間空間中水氣訊號之差異 ------------------------------------------------------------------------------------75 圖4-13、曝氮氣後,空間中水氣單光束光譜比較--------------------------76 圖4-14、放置乾冰前後表面水氣訊號強度及腔體溫度隨時間變化圖 ------------------------------------------------------------------------------------77 圖4-15、放置乾冰前後空間中水氣單光束光譜比較---------------------78 圖4-16、抽氣過程中溫度隨時間變化圖------------------------------------79 圖4-17、曝重水11.4 mbar後再曝入不同氮氣氣壓,抽氣後表面水氣訊號強度隨時間變化圖--------------------------------------------80 圖4-18、曝重水11.4 mbar後再曝入不同氮氣氣壓,抽氣後表面水氣訊號強度隨時間變化圖(圖4-17局部放大)--------------------81 圖4-19、曝輕水12 mbar與輕水(12 mbar)混合氮氣,抽氣後表面水氣訊號強度隨時間變化圖--------------------------------------------82

    1. Y. C. Liu, S. C. Wu, J. R. Chen and H. S. Tzeng, “The Outgassing and Pumping Effect of an Ultrahigh Vacuum System” Chinese J. of Physics, 23(4), 273 (1985)
    2. H. F. Dylla, D. M. Manos and P. M. LaMarche, “Correlation of outgassing of stainless and aluminum with various surface treatments”, J. Vac. Sci. Technol. A 11, 2623 (1993)
    3. J.R. Chen, K. Narushima, and H. Ishimaru, “Thermal outgassing from aluminum alloy vacuum chambers”, J. Vac. Sci. Technol. A3(6), 2188 (1985)
    4. John F. O’Hanlon, “A User•s Guide to Vacuum Technology”, John Wiley & Sons, New York (1989)
    5. John F. O’Hanlon and Jhy-Jer Shieh, “Reduction of water aerosol contamination during pumping of a vacuum chamber from atmospheric pressure”, J. Vac. Sci. Technol. A 9(5), 2802 (1991)
    6. 陳志敬,“鋁合金表面水釋氣之研究”,碩士論文,國立清華大學原子科學系,(2000)
    7. 徐鴻特,“真空中絕熱膨脹作用之探討”,碩士論文,國立清華大學原子科學系,(2001)
    8. 李仁佑,“真空中絕熱膨脹水氣吸附作用之討論”,碩士論文,國立清華大學原子科學系,(2003)
    9. 林志龍,“利用核反應分析術分析真空中水氣”,碩士論文,國立清華大學原子科學系,(2006)
    10. 陳志昇,“利用核反應分析法探討真空中絕熱膨脹之現象”,碩士論文,國立清華大學原子科學系,(2007)
    11. 葉家瑋,“建立紅外光分析系統以探討真空中水氣的現象”, 碩士論文,國立清華大學原子科學系,(2007)
    12. Hind A. Al-Abadleh and V. H. Grassian, “FT-IR study of water adsorption on aluminum oxide surface”, Langmuir 19,341-347 (2003)
    13. George E. Ewing, “Thin film water”, J. Phys. Chem. B 108, 41 (2004)
    14. T. Bezrodna, G. Puchkovska, V. Shymanovska, J. Baran, H. Ratajczak, “IR-analysis of H-bonded H2O on the pure TiO2 surface”, Journal of Molecular Structure 700,175-181 (2004)
    15. J.G. Chen, J.E. Crowell, and J.T. Yates,Jr., “Assignment of a surface vibrational mode by chemical means:Modification of the lattice modes of Al2O3 by a surface reaction with H2O”, J. Chem. Phys. 84(10), 15 (1986)
    16. G.K. Vemulapalli, “Physical Chemistry”, Ch.32, Prentice-Hall International, New Jersey (1993)
    17. F.W. Sears and G.L. Salinger, “Thermodynamics, Kinetic Theory and Statistical Thermodynamics”, Ch.9, Addison Wesley, London (1986)
    18. John F. O’Hanlon and Jhy-Jer Shieh, “Reduction of water aerosol contamination during pumping of a vacuum chamber from atmospheric pressure”, J. Vac. Sci. Technol. A9(5), 2802 (2001)
    19. Bill George and Peter Mclntyre, “Analytical Chemistry by Open Learning”, John Wiley & Sons, New York (2001)
    20. B. C. Smith, “Fundamentals of Fourier transform infrared spectroscopy”, Boca Raton, FL, CRC Press (1996)
    21. R.G. Greenler, “Infrared study of adsorbed molecules on metal surface by reflection techniques”, J. Chem. Phys., 44(1), 310 (1966)
    22. J.C. Vickerman, “Surface Analysis:the Principal Techniques”, John Wiley and Sons, New York (1997)
    23. D. Yang, J.C. Canit and E. Gaignebet, “Photoelastic modulator:polarization modulation and phase modulation”, Journal of Optics 26, 151 (1995)
    24. C. Kemp, “PEM-90 photoelastic modulation”, Hinds Instruments, Inc. (1991)
    25. B.J. Barner, M.J. Green, E.I. Saez and R.M. Corn, “Polarization modulation Fourier transform infrared reflectance measurements of thin films and monolayers at metal surfaces utilizing real-time sampling electronics”, Anal. Chem. 63, 55-60 (1991)
    26. T. Buffeteau, B. Desbat and J.M. Turlet, “Polarization modulation FT-IR spectroscopy of surfaces and ultra-thin films:experimental procedure and quqntitative analysis”, Applied Spectroscopy 45,380 (1991)
    27. T. Oakberg, “Modulator interference effect in photoelastic modulators”, Hinds Instruments (1998)
    28. P. Norton, “HgCdTe infrared detectors”, Opto-Electronics Review 10, 159 (2002)
    29. A. G. Mathewson, J. P. Bacher, K. Booth, R. S. Calder, G. Dominichini, A. Grillot, N. Hilleret, D. Latorre, F. Normand, and W. Unterlerchner, “Comparison of chemical cleaning methods of aluminum alloy vacuum chambers for electron storage rings”, J. Vac. Sci. Technol. A 7(1), 77 (1989)
    30. J. G. Park and J. H. Han, “The behavior of ozone in wet cleaning chemicals”,in Proc. 5th Int. Symp. Cleaning Technology in Semiconductor Device Manufacturing, Paris, France (1998)
    31. 劉亦凡, “鋁合金表面經臭氧水清洗之真空釋氣研究”,碩士論文,國立清華大學原子科學系,(2006)
    32. F. Franks, “Physical chemistry of water”, Science 184, 152 (1974)
    33. K. Nakamoto, “Infrared and Raman spectra of inorganic and coordination compounds”, Part. Ⅱ,John Wiley and Sons, New York (1978)
    34. X. Ding, E. Garfunkel, G. Dong, S. Yang and X. Hou, “Summary Abstract:The adsorption of water on clean and oxygen-covered Ag(100) studied by high resolution electron energy loss spectroscopy”, J. Vac. Sci. Technol. A4(3), 1468 (1986)
    35. George E. Ewing, “Ambient Thin Film Water on Insulator Surfaces”, Chem. Rev. 106,1511 (2006)
    36. K. Sing, D. H. Everett, R. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, “Reporting physisorption data for gas/solid system”, Pure and Appl. Chem. 57(4), 603 (1985)
    37. S. Hawkins, G. Kumi, S. Malyk, H. Reisler, C.Witting, “Temperature programmed desorption and infrared spectroscopic studies of thin water films on MgO(100)”, Chemical Physics Letters 404, 19 (2005)
    38. Yufei Cheng and Robert M. Corn, “Ultrathin Polypeptide Multilayer Films for the Fabrication of Model Liquis/Liquid Electrochemical Interfaces”, J. Phys. Chem. B 103, 8726 (1999)
    39. Brian L. Frey, Robert M. Corn and Stephen C. Weibel, “Polarization-modulation Approaches to Reflection-Absorption Spectroscopy”, John Wiley & Sons Ltd (2002)
    40. Yufei Cheng, Lasse Murtomaki, Robert M. Corn, “Electrochemical characterization of the ultrathin polypeptide film/1,2-dichloroethane liquid/liquid interface”, Journal of Electroanalytical Chemistry 483, 88 (2000)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE