研究生: |
吳宗庭 Wu, Tsung-Ting |
---|---|
論文名稱: |
矽材料分離式吸收-電荷-倍增之累增崩潰蕭特基光二極體應用於近紅外光偵測 Si Separate, Absorption, Charge and Multiplication Schottky Avalanche Photodiodes Applied in NIR Photodetection |
指導教授: |
李明昌
Lee, Ming-Chang |
口試委員: |
林聖迪
Lin, Sheng-Di 黃承彬 Huang, Chen-Bin |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 熱載子注入 、表面電漿 、近紅外光偵測器 、矽光偵測器 、雪崩光增益二極體 、分離式雪崩光二極體 |
外文關鍵詞: | Hot Carrier Injection, Surface plasmon mode, NIR Photodetectors, Si Photodetector, Avalanche Photodiodes, SACM Avalanche Photodiodes |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
論文提出由金屬表面電漿模態(surface plasmon mode)結構增強熱載子(hot carrier)注入矽材料的蕭特基(Schottky)雪崩光增益二極體(avalanche photodiodes),由於其元件設計理念與分離式-吸收-電荷-倍增之累增崩潰光二極體(separate absorption-charge-multiplication avalanche photodiodes, SACM APD)的概念十分相同,為此我們也稱其為Si SACM Schottky avalanche photodiodes.此設計理念藉用表面電漿模態對其光學響應將共振子轉換為熱載子,並將其萃取出注入至矽光二極體內,再經有矽光二極體操作在雪崩效應(avalanche effect)條件下,將熱載子訊號放大,以實現矽材料光偵測器對於近紅外偵測的可能性.而對於熱載子極低的光轉電響應度(Primary Responsivity A/W)~100uA/W,藉由高增益的條件下,達到在不同近紅外光波長下放大到44.25mA/W (1260nm)與 32.1mA/W(1550nm)。我們成功實現過去沒有人提出的方式,來實現矽材料光偵測器對近紅外光偵測可能從未有過的最高響應度.
This thesis proposes using surface plasma resonance (SPR) to enhance hot carrier generation and injection into Si Schottky avalanche photodiodes for near IR detection. These photodiodes are also called “Si SACM Schottky avalanche photodiodes”, owing to a similar device concept of separate absorption-charge-multiplication avalanche photodiodes, SACM APDs, which is commonly seen in semiconductor detectors. With this idea, the optically excited surface plasma turn into hot carriers through the SPR mode. Then, the hot carriers are injected into a Si PIN photodiode and initiate a multiplied photocurrent via the avalanche effect. This process enables the possibility of implementing a Si photodetector for detecting light extended into the NIR spectrum. According to the experimental results, the originally extremely low photoresponse of photogenerated hot carrier injection (~100uA/W) can be amplified to 44.25mA/W (1260nm) and 32.1mA/W (1550nm) in different NIR bands under the high-gain operation. In summary, we presented a Si photodetector which can achieve a record high response in NIR.
參考文獻
[1] S. M. Sze, Kwok K. Ng, “Physics of Semiconductor Devices.” Third Edition, WILEY-INTERSCIENCE, 2007.
[2] W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, vol. 424, pp. 824-830, 2003.
[3] E. Hutter and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Advanced Materials, vol. 16, pp. 1685-1706, 2004.
[4] A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, "Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings," Applied Physics Letters, vol. 97, p. 261908, 2010.
[5] E. Kretschmann and H. Raether, "Notizen: radiative decay of non radiative surface plasmons excited by light," Zeitschrift für Naturforschung A, vol. 23, pp. 2135-2136, 1968.
[6] A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift für Physik, vol. 216, pp. 398-410, 1968.
[7] Mark W. Knight, Heidar Sobhani, Peter Nordlander and Naomi J. Halas, "Photodetection with Active Optical Antennas, " Science, vol.332, 2011.
[8] Ali Sobhani, Mark W. Knight, Yumin Wang, Bob Zheng, Nicholas S. King, Lisa V. Brown, Zheyu Fang, Peter Nordlander and Naomi J. Halas, "Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device," Nature Communications, 2013.
[9] B Keng-Te Lin, Hsuen-Li Chen, Yu-Sheng Lai and Chen-Chieh Yu, "Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths," Nature Communications, 2014.
[10] Ilya Goykhman, Boris Desiatov, Jacob Khurgin, Joseph Shappir and Uriel Levy, "Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band," Optics Express, vol. 20, pp. 28594-28602, 2012.
[11] Mohammad Alavirad, Anthony Olivieri, Langis Roy and Pierre Berini, "High-responsivity sub-bandgap hot-hole plasmonic Schottky detectors," Optics Express, vol. 24, pp. 22544-22554, 2016.
[12] Liu, J.-M., "Photonic Devices," Cambridge University Press, 2005.
[13] Sze, S.M. and G. Gibbons, "Avalanche Breakdown Voltages of Abrupt and Linearly Graded p-n Junctions in Ge, Si, GaAs, and GaP, " AppliedPhysics Letters, 1966.
[14] 陳谷泓, “PIN鍺光偵測器及雪崩增益之研究”, 清華大學光電所。
[15] 林家鵬, “光柵結構之表面電漿柯爾磁光增強效應整合微流體晶片系統應用於生醫感測”, 清華大學光電所。
[16] 謝佳倩, “具濾波功能之近外光鍺光偵測器”, 清華大學光電所。