簡易檢索 / 詳目顯示

研究生: 葉 昕
Yeh, Hsin
論文名稱: 以氣相電泳法探討金屬 -有機框架奈米材料之穩定性作為複合式奈米材料的應用
Understanding the Stability of Metal-Organic Framework Nanomaterial by Gas-Phase Ion Mobility Analysis for the Application of Hybrid Nanomaterials
指導教授: 蔡德豪
Tsai, De-Hao
口試委員: 何榮銘
Ho, Rong-Ming
呂世源
Lu, Shih-Yuan
胡啟章
Hu, Chi-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 53
中文關鍵詞: 金屬-有機框架電噴灑式氣相奈米粒子電移動度分析儀熱穩定性藥物傳遞
外文關鍵詞: metal-organic framework, ES-DMA, Thermal stability, Drug delivery
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究以電噴灑式氣相奈米粒子電移動度分析儀 (electrospray-differential mobility analyzer,ES-DMA) 為基礎,開發孔性金屬有機框架 (metal-organic frameworks, MOF) 奈米材料穩定性的鑑定方法,藉由ES-DMA所測量得到的粒徑大小及數量濃度之變化,可分析膠體溶液中奈米粒子之間的聚集 (aggregation)、解聚 (de-aggregation) 與解體 (de-assembly) 現象。
      首先第一部分實驗進行的是熱穩定性的分析,本研究在ES-DMA系統中加入溫程控制之能力 (temperature programmed, TP), 組合成 TP-ES-DMA 系統,藉由調控管型高溫爐的溫度,觀察溫度變化對MOF粒徑的影響,進而對 MOF 膠體奈米材料之熱穩定性進行分析。首先,本研究測量UiO-66-NH2 以及UiO-66在經過加熱之後的粒徑變化,來觀察有機配位基的胺化對MOF熱穩定性的影響;另一方面則選擇MIL-88B-NH2 (Fe) 和 MIL-88B-NH2 (Cr) 來觀察MOF 之金屬節點對MOF熱穩定性的影響。結果顯示,有機配位基的胺化將使MOF的熱穩定性下降,而以鉻為金屬節點之MOF與鐵相較之下則有較好的熱穩定性。同時,本研究利用掃描式電子顯微鏡 (SEM) 測得之影像資訊來觀察 MOF 在溫度上升之後的外觀變化,也使用熱重分析法 (TGA) 及 X射線繞射分析 (XRD) 來測得 MOF 在高於熱分解溫度環境下的結構與組成變化,藉此驗證以TP-ES-DMA測量得到的結果。
      第二部分實驗進行的是MOF作為藥物傳遞載體的應用,將消炎藥布洛芬 (Ibuprofen) 擔載於UiO-66-NH2之孔洞中製備成複合式奈米材料 (Ibu@ UiO-66-NH2)。首先利用表面積及孔徑分析儀 (BET) 和 TGA來對擔載於UiO-66-NH2的布洛芬進行定量分析,比較以不同載藥方式所得到的樣品之間的載藥量差異。接著利用ES-DMA測量樣品之電移動度粒徑,分析Ibu@ UiO-66-NH2材料在不同溶液中的化學穩定性,觀察其載藥前後的性質變化,同時也測量粒子之界面電位 (Zeta potential) 。結果顯示,若以濕式含浸法 (wet impregnation) 來擔載藥物,那麼藥物吸附在UiO-66-NH2 表面的情形較為明顯,而初濕含浸法 (incipient wetness impregnation) 相較之下有較多藥物擔載於UiO-66-NH2的孔洞之中。至於化學穩定性方面,載藥後的UiO-66-NH2在純水中的穩定性跟載藥前相比沒有太大的差異。在模擬人體體液環境之中,以兩種方式製備的 Ibu@ UiO-66-NH2 材料在酸性環境下的穩定性皆低於中性環境下的穩定性。
      本研究證實了ES-DMA可用於鑑定MOF奈米材料的熱穩定性以及化學穩定性,除了能應用在觸媒以及生醫領域之外,未來還可以有更多元廣泛的應用。


    We develop a facile aerosol-based method to study the stability of metal-organic framework (MOF) nanomaterial colloids based on electrospray-differential mobility analyzer (ES-DMA). Using the data of number concentration and particle size collected by ES-DMA, we further analyze behaviors of the nanoparticles in colloidal solution, such as aggregation, de-aggregation and de-assembly. We combine the temperature-programmed device with ES-DMA to establish the TP-ES-DMA system for evaluating the effect of the change in the temperature on the particle size of MOF. We also analyze the thermal stability of MOF colloids in response to the thermal treatment.
    In the first part of the experiments, we chose UiO-66 and UiO-66-NH2 to determine the effect of aminization of organic ligand on thermal stability of MOF. In the second part, we chose MIL-88B-NH2(Fe) and MIL-88B-NH2(Cr) to observe the effect of metal complex node on their thermal stability. The results have shown that the aminization of organic ligand lowered the thermal stability, while the Cr-based MOF exhibited higher thermal stability than the Fe-based MOF did. In the meanwhile, we obtained images of MOF by SEM to observe the change in morphology after the rise in temperature. Also, we used TGA and XRD to measure the change in the structure and the composition of MOF at the temperature higher than the starting point of the thermal disintegration. The results from TGA and XRD can be used as the verification for those obtained by TP-ES-DMA.
    In the second part of the experiments, we synthesized hybrid nanomaterials by encapsulating ibuprofen drugs in MOF for the application of drug delivery. We used BET analysis and TGA to determine the amount of drug loading for the comparison between different methods of drug encapsulation. We analyzed the chemical stability of Ibu@UiO-66-NH2 by measuring the mobility diameter and also the zeta potentials of particles. The results have shown that more drugs adsorbed on the surface of UiO-66-NH2 when synthesized by the wet impregnation method. In contrast, there would be more drugs presented in the pores by using the incipient wetness impregnation approach. The chemical stability of UiO-66-NH2 in water was not much affected by drugs encapsulation, however, in the simulated environment of human body fluid, the chemical stability of both type of Ibu@UiO-66-NH2 was much affected in acid condition than in neutral environment.
    This study has proved that we can use ES-DMA to characterize the thermal stability and chemical stability of MOFs, not only can be used in applications of catalysis and biomedical area, but also can be used in other types of applications in the future.

    摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 VIII 表目錄 IX 第 1 章 緒論 1 1-1 分散式奈米材料 1 1-2 金屬-有機框架 (Metal-organic framework,MOF) 2 1-3 布洛芬簡介 5 1-4 MOF 在藥物傳遞方面之應用 6 1-5 MOF材料穩定性之影響與鑑定方式 8 1-6 研究方法與目的 10 第 2 章 實驗方法 11 2-1 實驗藥品 11 2-2 樣品準備方式 12 2-2.1 MOF膠體溶液製備 12 2-2.2 以濕式含浸法 (wet impregnation) 製備Ibu@MOF 13 2-2.3 以初濕含浸法 (incipient wetness impregnation) 製備Ibu@MOF 14 2-3 實驗儀器 15 2-4 實驗儀器原理及方法 16 2-4.1 電噴灑式氣相奈米粒子流動分析儀 16 2-4.2 掃描式電子顯微鏡 (SEM) 18 2-4.3 熱重分析法 (TGA) 20 2-4.4 X射線繞射分析 (XRD) 20 2-4.5 表面積及孔徑分析儀 20 2-4.6 界面電位分析儀 (Zeta potential analyzer) 21 第 3 章 MOF奈米材料之熱穩定性分析作為籌備CuxO@MOF複合奈米粒子觸媒之應用 22 3-1 MOF之有機配位基對熱穩定性的影響 22 3-1.1 UiO-66與UiO-66-NH2之電移動度粒徑分佈 22 3-1.2 UiO-66與UiO-66-NH2之熱重分析及X射線繞射分析 26 3-2 MOF之金屬節點對熱穩定性的影響 28 3-2.1 MIL-88B-NH2(Fe) 與MIL-88B-NH2(Cr) 之電移動度粒徑分佈 28 3-2.2 MIL-88B-NH2(Fe) 與MIL-88B-NH2(Cr) 之熱重分析及X射線繞射分析 31 3-3 利用熱穩定性分析結果製備CuxO@MOF複合奈米粒子觸媒 33 第 4 章 以MOF奈米材料作為藥物載體與化學穩定性分析探討 36 4-1 Ibu@UiO-66-NH2 藥物擔載情形分析 36 4-2 Ibu@UiO-66-NH2 化學穩定性測試 40 4-3 Ibu@UiO-66-NH2 在模擬人體體液環境中之穩定性測試 43 第 5 章 結論 47 第 6 章 未來展望 48 第 7 章 參考文獻 50

    1. Felix, C., et al., Electrophoresis and stability of nano-colloids: History, theory and experimental examples. Adv. Colloid Interface Sci., 2014. 211 p. 77-92.
    2. Eerdenbrugh, B.V., G.V.d. Mooter, and P. Augustijns, Top-down production of drug nanocrystals: Nanosuspension stabilization, miniaturization and transformation into solid products. Int. J. Pharm., 2008. 364: p. 64-75.
    3. Furukawa, H., et al., The Chemistry and Applications of Metal-Organic Frameworks SCIENCE, 2013. 341 (6149): p. 974-+.
    4. Ahn, Y.-R.L.J.K.W.-S., Synthesis of metal-organic frameworks: A mini review. Korean J. Chem. Eng., 2013. 30(9): p. 1667-1680.
    5. Granick, M.S.N.Y.A.-Y.J.S., Colloidal-Sized Metal–Organic Frameworks: Synthesis and Applications. Acc. Chem. Res., 2014. 47(2): p. 459-469.
    6. Keskin, S. and S. Kızılel, Biomedical Applications of Metal Organic Frameworks. Ind. Eng. Chem. Res. , 2011. 50: p. 1799-1812.
    7. Giménez-Marqués, M., T. Hidalgo, and P.H. C. Serre, Nanostructured metal–organic frameworks and their bio-related applications. Coordination Chemistry Reviews 2016. 307: p. 342-360.
    8. Nguyen, H.G.T., et al., Vanadium-Node-Functionalized UiO-66: A Thermally Stable MOF-Supported Catalyst for the Gas-Phase Oxidative Dehydrogenation of Cyclohexene. ACS catalysis, 2014. 4: p. 2496-2500.
    9. Yang, Q., et al., A Water Stable Metal–Organic Framework with Optimal Features for CO2 Capture. Angew. Chem. Int. Ed., 2013. 52: p. 10316-10320.
    10. Piscopo, C.G., et al., Stability of UiO-66 under acidic treatment: Opportunities and limitations for post-synthetic modifications. Microporous Mesoporous Mater., 2015. 208: p. 30-35.
    11. Pham, M.-H., et al., Novel Route to Size-Controlled Fe-MIL-88B NH2 Metal Organic Framework Nanocrystals. Langmuir 2011. 27: p. 15261–15267
    12. Xiao, Y., et al., Synthesis of MIL-88B(Fe)/Matrimid mixed-matrix membranes with high hydrogen permselectivity. RSC Adv., 2015. 5: p. 7253-7259.
    13. Ma, M., et al., Iron MetalOrganic Frameworks MIL-88B and NH2-MIL-88B for the Loading and Delivery of the Gasotransmitter Carbon... Chem. Eur. J., 2013. 19: p. 6785 – 6790.
    14. McKinlay, A.C., et al., Nitric Oxide Adsorption and Delivery in Flexible MIL-88(Fe) Metal–Organic Frameworks. Chem. Mater. , 2013. 25: p. 1592-1599.
    15. Yang, F., et al., Proton Conductivities in Functionalized UiO-66: Tuned Properties, Thermogravimetry Mass, and Molecular Simulation Analyses. Cryst. Growth Des, 2015. 15: p. 5827-5833.
    16. D. Cunha, et al., Rationalization of the entrapping of bioactive molecules into a series of functionalized porous zirconium terephthalate MOFs. J. Mater. Chem. B, 2013. 1: p. 1101-1108.
    17. J.P. Zheng, et al., Study on ibuprofen/montmorillonite intercalation composites as drug release system Applied Clay Science 2007. 36: p. 297-301.
    18. Tiwari, G., et al., Drug delivery systems: An updated review. Int J Pharm Investig, 2012. 2(1): p. 2-11.
    19. Horcajada, P., et al., Flexible Porous Metal-Organic Frameworks for a Controlled Drug Delivery. J. AM. CHEM. SOC. , 2008. 130: p. 6774-6780.
    20. Sun, K., et al., Functionalization of mixed ligand metal-organic frameworks as the transport vehicles for drugs. Journal of Colloid and Interface Science 2017. 486 p. 128-135.
    21. Motakef-Kazemi, N., S.A. Shojaosadati, and A. Morsali, In situ synthesis of a drug-loaded MOF at room temperature. Microporous and Mesoporous Materials 2014. 186: p. 73-79.
    22. Vallet-Regi, P.H.C.S.M., M. Sebban, and F.T.G. Ferey*, Metal–Organic Frameworks as Efficient Materials for Drug Delivery. Angew. Chem. Int. Ed. , 2006. 45: p. 5974 -5978.
    23. Matsuyama, K., et al., Supercritical carbon dioxide-assisted drug loading and release from biocompatible porous metal–organic frameworks. J. Mater. Chem. B, 2014. 2: p. 7551–7558.
    24. Tai, S., et al., Facile preparation of UiO-66 nanoparticles with tunable sizes in a continuous flow microreactor and its application in drug delivery. Microporous and Mesoporous Mat., 2016. 220: p. 148-154.
    25. Chowdhuri, A.R., et al., Synthesis of multifunctional upconversion NMOFs for targeted antitumor drug delivery and imaging in triple negative breast cancer cells. CHEM. ENG. J., 2017. 319: p. 200-211.
    26. Zhao, H.-X., et al., Theranostic metal–organic framework core–shell composites for magnetic resonance imaging and drug delivery. Chem. Sci., 2016. 7: p. 5294.
    27. McKinlay, A.C., et al., Multirate delivery of multiple therapeutic agents from metal-organic frameworks. APL Materials, 2014. 2: p. 124108.
    28. Allan, P.K., et al., Metal-organic frameworks for the storage and delivery of biologically active hydrogen sulfide. Dalton Trans, 2012. 41: p. 4060-4066
    29. Zhang, H.-X.Z.Q.Z.S.-K.S.C.Y.X. and R.-J.L.Y.-Y. Fu, Theranostic metal–organic framework core–shell composites for magnetic resonance imaging and drug delivery. Chem. Sci., 2016. 7: p. 5294.
    30. Horcajada, P., et al., Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Materials, 2010. 9: p. 172-178.
    31. Hu, Q., et al., A Low Cytotoxic Cationic Metal–Organic Framework Carrier for Controllable Drug Release. J. Med. Chem., 2014. 57(13): p. 5679-5685.
    32. Kim, C.R., T. Uemura, and S. Kitagawa, Inorganic nanoparticles in porous coordination polymers. Chemical Society Reviews, 2016. 45: p. 3828-3845.
    33. Kang, I.J., et al., Chemical and Thermal Stability of Isotypic Metal–Organic Frameworks: Effect of Metal Ions. Chem. Eur. J. , 2011. 17: p. 6437 - 6442.
    34. Burtch, N.C., H. Jasuja, and K.S. Walton, Water Stability and Adsorption in Metal–Organic Frameworks. Chem. Rev., 2014. 114(20): p. 10575-10612.
    35. Chen, X., et al., Boosting Chemical Stability, Catalytic Activity, and Enantioselectivity of Metal−Organic Frameworks for Batch and Flow Reactions. J. Am. Chem. Soc., 2017. 139: p. 13476-13482.
    36. Lai, Y.-C., et al., Metal-Organic Framework Colloids: Disassembly and Deaggregation. Langmuir 2016. 32: p. 6123-6129.
    37. Hu, P., J.V. Morabito, and C.-K. Tsung, Core−Shell Catalysts of Metal Nanoparticle Core and Metal−Organic Framework Shell. ACS catalysis, 2014. 4: p. 4409~4419.
    38. Feng, D.W., et al., Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. NATURE COMMUNICATIONS, 2015. 6: p. 5979.
    39. Sivakumar, P., et al., Chitosan capped nanoscale Fe-MIL-88B-NH2 metal-organic framework as drug carrier material for the pH responsive delivery of doxorubicin. Mater. Res. Express 2017 4(8): p. 085023.
    40. Miller, S.R., et al., Biodegradable therapeutic MOFs for the delivery of bioactive molecules. Chem. Commun., 2010. 46: p. 4526-4528.
    41. Tai, S., et al., Facile preparation of UiO-66 nanoparticles with tunable sizes in a continuous flow microreactor and its application in drug delivery. Microporous and Mesoporous Mat., 2016. 220: p. 148-154.
    42. Cunha, D., et al., Rationale of Drug Encapsulation and Release from Biocompatible Porous Metal Organic Frameworks. Chem. Mater. , 2013. 25: p. 2767-2776.
    43. Manaia, E.B., et al., Physicochemical characterization of drug nanocarriers. Int J Nanomedicine, 2017. 12: p. 4991-5011.
    44. Tsai, D.-H., et al., Adsorption and Conformation of Serum Albumin Protein on Gold Nanoparticles Investigated Using Dimensional Measurements and in Situ Spectroscopic Methods. Langmuir, 2011. 27: p. 2464-2477.
    45. Guha, S., et al., Electrospray–differential mobility analysis of bionanoparticles. TRENDS BIOTECHNOL, 2012. 30(5): p. 291-300.
    46. Tai, J.T., et al., Protein-silver nanoparticle interactions to colloidal stability in acidic environments. Langmuir, 2014. 30(43): p. 12755-64.
    47. Rungtaweevoranit, B., et al., Copper Nanocrystals Encapsulated in Zr-based Metal Organic Frameworks for Highly Selective CO2 Hydrogenation to Methanol. NANO LETTERS, 2016. 16: p. 7645-7649.
    48. Wang, K., et al., A facile synthesis of copper nanoparticles supported on an ordered mesoporous polymer as an efficient and stable catalyst for solvent-free sonogashira coupling Reactions. Green Chemistry, 2017. 19: p. 1949-1957.
    49. Dhakshinamoorthy, A., A.M. Asiri, and H. Garcia, Metal–Organic Frameworks as Catalysts for Oxidation Reactions. Chem. Eur.J., 2016. 22: p. 8012 –8024.
    50. Yap, M.H., K.L. Fow, and G.Z. Chen, Synthesis and applications of MOF-derived porous nanostructures. Green Energy & Environment 2017. 2(3): p. 218-245.
    51. Li, M., et al., Method for Determining the Absolute Number Concentration of Nanoparticles from Electrospray Sources. Langmuir, 2011. 27: p. 14732-14739.
    52. Li, M., et al., Quantification and Compensation of Nonspecific Analyte Aggregation in Electrospray Sampling. Aerosol Sci Technol, 2011. 45(7): p. 849-860.
    53. Tai, J.-T., et al., Quantifying Nanosheet Graphene Oxide Using Electrospray Differential Mobility Analysis. Anal. Chem. , 2015. 87: p. 3884-3889.
    54. Chang, W.-C., et al., Surface PEGylation of Silver Nanoparticles: Kinetics of Simultaneous Surface Dissolution and Molecular Desorption. Langmuir 2016. 32: p. 9807-9815.
    55. 陳怡臻, 以氣霧化異相自組裝方式製備功能混成奈米粒子與其水相膠體作為生醫與能環領域之應用, 碩士論文, Editor. 2017, 國立清華大學: 化學工程學系.
    56. Wang, H.-L., et al., Thermal Stability of Metal−Organic Frameworks and Encapsulation of CuO Nanocrystals for Highly Active Catalysis. ACS Appl. Mater. Interfaces, 2018. 10: p. 9332-9341.
    57. Li´edana, N., et al., The template role of caffeine in its one-step encapsulation in MOF NH2-MIL-88B(Fe). J. Mater. Chem. B, 2014. 2: p. 1144-1151.
    58. Ehara, K., C. Hagwoodt, and K.J. Coakley, Novel Method to Classify Aerosol Particles According to Their Mass-to-Charge Ratio: Aerosol Particle Mass Analyzer. J. Aerosol Sci. , 1996. 27: p. 217-234.
    59. Nguyen, T.P., et al., Quantitative characterization of colloidal assembly of graphene oxide-silver nanoparticle hybrids using aerosol differential mobility-coupled mass analyses. Anal Bioanal Chem 2017. 409: p. 5933-5941.
    60. Lee, S.Y., et al., Measurement of the Effective Density of Both Spherical Aggregated and Ordered Porous Aerosol Particles Using Mobility- and Mass-Analyzers. Aerosol Science and Technology, 2009. 43: p. 136-144.

    QR CODE