研究生: |
曾信華 Fouriers Shin-Hua Tseng |
---|---|
論文名稱: |
在一個純間隙連接的神經迴路中以連續兩次神經衝動誘導出高頻震盪 Induction of High-frequency Oscillations in a Junction-coupled Network by a paired spike |
指導教授: |
葉世榮
Shih-Rung Yeh |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生命科學系 Department of Life Sciences |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 64 |
中文關鍵詞: | 高頻震盪 、螯蝦 、電腦模擬 、回響 |
外文關鍵詞: | high frequency oscillation, crayfish, computer simulation, reverberation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在脊椎動物腦部的許多區域以及非脊椎動物的中樞神經系統中,於一群神經細胞中誘導出頻率最高可達每秒600次的神經衝動(spike)震盪在過去曾被觀測到。根據過去的許多研究指出,電突觸(electrical synapse)對這種高頻的神經衝動震盪扮演著相當重要的角色。透過電腦模擬與電生理實驗,雖然很多研究認為在化學突觸的參與下,神經震盪可以很容易被誘導出來。然而,非常多的研究指出,這種高頻震盪與化學突觸無關。只和電突觸以及神經本身具有的離子通道相關。雖然有許多可能機制利用電腦模擬陸續地被提出,但是這些機制都未能找到合適的神經系統來給予驗證。更不用說高頻震盪是如何開始形成的。在本研究中,藉由電腦模擬,我們得到如下的結果:透過兩次密集的神經衝動,在一個以純電突觸相連結的封閉神經迴路中,高頻震盪可以很容易地被誘導出來。更進一步的,我們在螯蝦中,一個以純電突觸相連結的側邊巨大神經(lateral giant neuron)所構成封閉神經迴路上,採用同樣的方式也可以誘導出高達每秒626次的高頻神經衝動震盪。
詳細分析發現,這種方式所產生的高頻震盪取決於弱間隙連接以及神經衝動後恢復期間(refractory period)所新產生動作電位(action potential)的傳遞行為有關。因為這個新產生的動作電位很難被激發出來。即使產生了,在神經軸索(axon)的傳遞也會變慢,並且難以通過細胞間的間隙連接。結果,當兩個密集的神經衝動發生在一個間隙連接附近,只有第一個衝動會通過此間隙連接。而此兩衝動會隨著在神經軸索上行進的距離變長而逐漸拉開,於是當它們在碰到下一個間隙連接時,會因為它們之間的時間間隔拉大了而都能成功通過此電突觸。此一現象發生在一個封閉的神經迴路中時,由於一個方向有兩個衝動在傳遞,另一個方向則只有一個衝動在跑。當這些衝動撞在一起時,兩方向的第一個衝動會互撞消逝而只剩下一個衝動在此封閉迴路不停的繞下去。此時,這一封閉的神經迴路就成為一個震盪中心持續產生動作電位。由於這種高頻震盪是由一個脈衝在封閉的神經迴圈中持續的運行,震盪頻率便可以由一個脈衝繞此迴圈一週所需的時間來決定。
最後,透過電腦模擬及電生理實驗,我們也發現如果能在震盪的衝動之間,人為的產生另一個動作電位,便可以終止此震盪。這方法或許對癲癇症的處置可以些提供有價值引導。
High-frequency oscillation (HFO) up to 600 Hz in grouped neurons have been observed in the brain areas of vertebrates and central nerve system of invertebrates. Many studies indicate electrical synapses play key roles. With the participation of chemical synapses, neuronal oscillation can be easily generated either by computer simulation or real electrophysiological measurement. However, many reports indicate that HFO is independent of chemical synapse, but depend on gap junction and intrinsic properties of ion channels of participating neurons. Although several mechanisms have been suggested from computer simulations, no one has been verified in real neurons. It is even difficult to understand how HFO is initiated. Here we demonstrate how a paired-spike induces HFO in a gap-junction-coupled network which formed a closed loop and contained only three cells. Furthermore, HFO up to 626 Hz in an electrically coupled network of crayfish was also displayed without the involvement of chemical synapses.
In fact, the oscillation only depends on weakly-coupled gap junctions and associated behaviors of spike propagation during refractory period of preceding action potential. For initiating oscillations, it is absolutely essential that the second spike is elicited during the refractory period. Even a spike is elicited; it suffers from slow propagation speed and a tendency for failure through low conductance junctions. Thus, paired-spikes with a short spike interval induce only one trans-junctional spike. At distant synaptic sites, two trans-junctional spikes are triggered because the spike interval increases with spike propagation. Consequently, trans-junctional spikes collide in a gap-junction-coupled network. The remaining single spike reverberates in a loop that serves as an oscillation centre. Since HFO is generated by spike reverberation in a closed loop. The oscillating frequency is decided by the spike traveling time through the closed loop of oscillating center.
Further analysis by both simulation and electrophysiological experiment indicated that a simple insertion of spike into the oscillating spikes was verified being able to terminate the paired-spike-elicited HFO. This simple method might provide a valuable hint for the treatment of epilepsy.
Abbott LF, and van Vreeswijk C. Asynchronous states in networks of pulse-coupled oscillators. Phys Rev E 48: 1483, 1993.
Andrew RD, Taylor CP, Snow RW, and Dudek FE. Coupling in rat hippocampal slices: dye transfer between CA1 pyramidal cells. Brain Res Bull 8: 211-222, 1982.
Bartos M, Vida I, Frotscher M, Meyer A, Monyer H, Geiger JR, and Jonas P. Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proc Natl Acad Sci U S A 99: 13222-13227, 2002.
Bennett MV, and Zukin RS. Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41: 495-511, 2004.
Bragin A, Engel J, Jr., Wilson CL, Fried I, and Buzsaki G. High-frequency oscillations in human brain. Hippocampus 9: 137-142, 1999a.
Bragin A, Engel J, Jr., Wilson CL, Fried I, and Mathern GW. Hippocampal and entorhinal cortex high-frequency oscillations (100--500 Hz) in human epileptic brain and in kainic acid--treated rats with chronic seizures. Epilepsia 40: 127-137, 1999b.
Bragin A, Mody I, Wilson CL, and Engel JJ. Local generation of fast ripples in epileptic brain. J Neurosci 22: 2012-2021, 2002a.
Bragin A, Wilson CL, Staba RJ, Reddick M, Fried I, and Engel J, J. Interictal high-frequency oscillations (80-500 Hz) in the human epileptic brain: entorhinal cortex. Ann Neurol 52: 407-415, 2002b.
Buzsaki G, Horvath Z, Urioste R, Hetke J, and Wise K. High-frequency network oscillation in the hippocampus. Science 256: 1025-1027, 1992.
Corlew R, Bosma MM, and Moody WJ. Spontaneous, synchronous electrical activity in neonatal mouse cortical neurones. J Physiol 560: 377-390, 2004.
Csicsvari J, Hirase H, Czurko A, Mamiya A, and Buzsaki G. Fast network oscillations in the hippocampal CA1 region of the behaving rat. J Neurosci 19: 20RC-, 1999.
Draguhn A, Traub RD, Schmitz D, and Jefferys JG. Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature 394: 189-192, 1998.
Dzhala VI, and Staley KJ. Mechanisms of fast ripples in the hippocampus. J Neurosci 24: 8896-8906, 2004.
Friedman D, and Strowbridge BW. Both electrical and chemical synapses mediate fast network oscillations in the olfactory bulb. J Neurophysiol 89: 2601-2610, 2003.
Furshpan EJ, and Potter DD. Transmission at the giant motor synapses of the crayfish. J Physiol 145: 289-325, 1959.
Grundfest H. Evolution of conduction in the nervous system. In: Evolution of Nervous Control, edited by Bass AD. Washington, D. C.: American Association for the Advancement of Science, 1959.
Gu N, Vervaeke K, and Storm JF. BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells. J Physiol 580: 859-882, 2007.
Guld C. Cathode Follower and Negative Capacitance as High Input Impedance Circuits. Proceedings of the IRE 50: 1912-1927, 1962.
Hines M, Moore JW, and Carnevale T. NEURON http://www.neuron.yale.edu/neuron/.
Hodgkin AL, and Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117: 500-544, 1952.
Jefferys JG, and Haas HL. Synchronized bursting of CA1 hippocampal pyramidal cells in the absence of synaptic transmission. Nature 300: 448-450, 1982.
Jirsch JD, Urrestarazu E, LeVan P, Olivier A, Dubeau F, and Gotman J. High-frequency oscillations during human focal seizures. Brain 129: 1593-1608, 2006.
Jones MS, and Barth DS. Effects of bicuculline methiodide on fast (>200 Hz) electrical oscillations in rat somatosensory cortex. J Neurophysiol 88: 1016-1025, 2002.
Jones MS, and Barth DS. Spatiotemporal organization of fast (>200 Hz) electrical oscillations in rat vibrissa/barrel cortex. J Neurophysiol 82: 1599-1609, 1999.
Kandler K, and Katz LC. Neuronal coupling and uncoupling in the developing nervous system. Current opinion in neurobiology 5: 98-105, 1995.
Kao CY. Basis for after-discharge in the median giant axon of the earthworm. Science 123: 803, 1956.
Kao CY. Postsynaptic electrogenesis in septate giant axons. II. Comparison of medial and lateral giant axons of crayfish. J Neurophysiol 23: 618-635, 1960.
Kao CY, and Grundfest H. Postsynaptic electrogenesis in septate giant axons. I. Earthworm median giant axon. J Neurophysiol 20: 553-573, 1957.
Lewis TJ, and Rinzel J. Self-organized synchronous oscillations in a network of excitable cells coupled by gap junctions. Network (Bristol, England) 11: 299-320, 2000.
Lien C-C, and Jonas P. Kv3 Potassium Conductance is Necessary and Kinetically Optimized for High-Frequency Action Potential Generation in Hippocampal Interneurons. J Neurosci 23: 2058-2068, 2003.
Mann-Metzer P, and Yarom Y. Electrotonic coupling interacts with intrinsic properties to generate synchronized activity in cerebellar networks of inhibitory interneurons. J Neurosci 19: 3298-3306, 1999.
Marin G, Mpodozis J, Sentis E, Ossandon T, and Letelier JC. Oscillatory bursts in the optic tectum of birds represent re-entrant signals from the nucleus isthmi pars parvocellularis. J Neurosci 25: 7081-7089, 2005.
Minlebaev M, Ben-Ari Y, and Khazipov R. Network mechanisms of spindle-burst oscillations in the neonatal rat barrel cortex in vivo. J Neurophysiol 97: 692-700, 2007.
Palva JM, Lamsa K, Lauri SE, Rauvala H, Kaila K, and Taira T. Fast network oscillations in the newborn rat hippocampus in vitro. J Neurosci 20: 1170-1178, 2000.
Perez-Velazquez JL, Valiante TA, and Carlen PL. Modulation of gap junctional mechanisms during calcium-free induced field burst activity: a possible role for electrotonic coupling in epileptogenesis. J Neurosci 14: 4308-4317, 1994.
Schmitz D, Schuchmann S, Fisahn A, Draguhn A, Buhl EH, Petrasch-Parwez E, Dermietzel R, Heinemann U, and Traub RD. Axo-axonal coupling. a novel mechanism for ultrafast neuronal communication. Neuron 31: 831-840, 2001.
Skinner FK, Kopell N, and Mulloney B. How does the crayfish swimmeret system work? Insights from nearest-neighbor coupled oscillator models. Journal of computational neuroscience 4: 151-160, 1997.
Sohl G, Maxeiner S, and Willecke K. Expression and functions of neuronal gap junctions. Nat Rev Neurosci 6: 191-200, 2005.
Staba RJ, Bergmann PC, and Barth DS. Dissociation of slow waves and fast oscillations above 200 Hz during GABA application in rat somatosensory cortex. J Physiol 561: 205-214, 2004.
Staba RJ, Brett-Green B, Paulsen M, and Barth DS. Effects of ventrobasal lesion and cortical cooling on fast oscillations (>200 Hz) in rat somatosensory cortex. J Neurophysiol 89: 2380-2388, 2003.
Staba RJ, Wilson CL, Bragin A, Fried I, and Engel JJ. Quantitative analysis of high-frequency oscillations (80-500 Hz) recorded in human epileptic hippocampus and entorhinal cortex. J Neurophysiol 88: 1743-1752, 2002.
Taylor CP, and Dudek FE. A physiological test for electrotonic coupling between CA1 pyramidal cells in rat hippocampal slices. Brain Res 235: 351-357, 1982a.
Taylor CP, and Dudek FE. Synchronous neural afterdischarges in rat hippocampal slices without active chemical synapses. Science 218: 810-812, 1982b.
Tegner J, Compte A, and Wang XJ. The dynamical stability of reverberatory neural circuits. Biol Cybern 87: 471-481, 2002.
Traub RD, and Bibbig A. A model of high-frequency ripples in the hippocampus based on synaptic coupling plus axon-axon gap junctions between pyramidal neurons. J Neurosci 20: 2086-2093, 2000.
Traub RD, Whittington MA, Buhl EH, LeBeau FE, Bibbig A, Boyd S, Cross H, and Baldeweg T. A possible role for gap junctions in generation of very fast EEG oscillations preceding the onset of, and perhaps initiating, seizures. Epilepsia 42: 153-170, 2001.
Urrestarazu E, Chander R, Dubeau F, and Gotman J. Interictal high-frequency oscillations (100 500 Hz) in the intracerebral EEG of epileptic patients. Brain 130: 2354-2366, 2007.
Van Harreveld A. A physiological solution for fresh water crustaceans. Proc Soc Exper Biol a Med 34: 428-432, 1936.
Wang LY, Gan L, Forsythe ID, and Kaczmarek LK. Contribution of the Kv3.1 potassium channel to high-frequency firing in mouse auditory neurones. J Physiol 509: 183-194, 1998.
Wang XJ, and Buzsaki G. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci 16: 6402-6413, 1996.
Watanabe A, and Grundfest H. Impulse propagation at the septal and commissural junctions of crayfish lateral giant axons. J Gen Physiol 45: 267-308, 1961.
Ye SR, Yang JW, and Chen CM. Effect of static magnetic fields on the amplitude of action potential in the lateral giant neuron of crayfish. Int J Radiat Biol 80: 699 - 708, 2004.