研究生: |
沈維晟 Shen, Wei-Cheng |
---|---|
論文名稱: |
甲醇水溶液於漸擴微流道熱沉之對流沸騰研究 Convective Boiling of Methanol/Water Mixtures in a Diverging Microchannel Heat Sink |
指導教授: |
潘欽
Pan, Chin |
口試委員: |
楊毓民
Yang, Yu-Min 李堅雄 Lee, Chien-Hsiung |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 沸騰熱傳 、雙相流 、甲醇水溶液 、微流道 |
外文關鍵詞: | boiling heat transfer, two-phase flow, binary mixture, microchannel |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係利用微機電技術製造矽質漸擴微流道熱沉以探討甲醇水溶液在微尺度下流動沸騰的熱傳現象。為了均勻分配流量並降低工作流體在雙相區間時嚴重的回流情形,測試段在工作流體入口端至主要流道間設計樹枝狀分配器並在每一個分配器末端加上突擴結構以求提高流道的上游壓降。研究中將探討溶液濃度和質量通率在流譜的分佈、熱傳分析以及臨界熱通率的影響。
本研究定義了四種流動行態,分別為(1)氣泡長型彈狀流、(2)環形流、(3)液膜破碎、以及(4)乾化。並根據實驗結果分別建立各種流動行態在不同溶液濃度下與壁過熱度及壁熱通率的流譜分佈。其中發現在低及中熱通率條件下,氣泡長型彈狀流以及環形流為主要的流動行態,因此推測在雙相區,甲醇水溶液在微流道中微液膜的沸騰為主要的熱傳機制。實驗結果顯示在這兩個流動形態,熱傳遞係數隨著壁熱通率的增加而增加。相對於在高熱通率條件下,主要的流動行態為液膜破碎。在此流動條件,熱傳遞係數隨著壁熱通率的增加而減少。由於實驗結果顯示相較於其他濃度下最廣的液膜破碎區域存在於甲醇莫耳分率xm = 0.3,因此本研究推測表面張力在氣液介面的震盪為其中一項影響液膜破碎的主因。在熱傳遞係數方面,甲醇水溶液的熱傳遞係數隨著壁過熱度的增加幾乎維持在一個定值。顯示甲醇水溶液在雙相區間的移熱能力上較純水及純甲醇穩定。本實驗的臨界熱通率在xm = 0.3時達到最大值,之後隨著甲醇濃度的增加造成質傳上的阻力提高而導致臨界熱通率明顯的迅速下降。在質量通率方面,隨著質量通率的增加,單相及雙相熱傳都有較好的表現。
This study conducts an experimental investigation and visualization for convective flow boiling heat transfer of methanol/water mixtures in parallel diverging multichannels with a hydraulic diameter of 468.5μm. In order to reduce flow reversal in the two-phase region, a tree-like inlet distributor with a sudden expansion structure in front of each channel is designed. The MEMS technology is applied to fabricate the microchannel. The effect of molar fractions and mass fluxes on flow patterns, heat transfer, and critical heat flux are studied.
Four distinct two-phase flow patterns can be identified, namely, (a) bubbly-elongated slug flow, (b) annular flow, (c) film breakup, and (d) dryout. Moreover, flow pattern maps on the planes of wall superheat or wall heat flux versus molar fractions, separately, are established based on the data of this study. For low to medium heat fluxes, the dominant flow patterns are elongated slug flow and annular flow, which indicates that the evaporation of a thin liquid film is the major mechanism of heat transfer for convective flow boiling of methanol/water mixtures in a microchannel. For these two-phase flow patterns, the heat transfer coefficient generally increases with an increase in heat flux.
The liquid film breakup is the dominant flow pattern for high heat fluxes. For these particular flow pattern, the heat transfer coefficient decreases with an increase in heat flux. Moreover, the temperature span of film breakup region has a widest range for xm = 0.3, suggesting that the most important factor of the liquid film breakup be the agitation of the surface tension on the liquid-vapor surface. A molar fraction of 0.3 presents the highest CHF in the present study.
The present study also reveals that an increase in the mass flux may result in the better performance for heat transfer in both single and two phase regions.
1. Crabtree, G.W., M.S. Dresselhaus, and M.V. Buchanan, The hydrogen economy. Physics Today, 2004. 57(12): p. 39-44.
2. Ogden, J.M., Hydrogen: The Fuel of the Future? Physics Today, 2002. 55(4): p. 69-75.
3. Thomas, G., Overview of Storage Development DOE Hydrogen Program. 2000, Sandia National Laboratories: Livermore, CA.
4. Hamelinck, C.N. and A.P.C. Faaij, Future prospects for production of methanol and hydrogen from biomass. Journal of Power Sources, 2002. 111(1): p. 1-22.
5. F. Brown, L., A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles. International Journal of Hydrogen Energy, 2001. 26(4): p. 381-397.
6. Delsman, E.R., et al. MiRTH-e: Micro Reactor Technology for Hydrogen and Electricity Proceedings of the Fifth International Conference on Microreaction Technology. in Proceedings of the Fifth International Conference on Microreaction Technology. 2001. Verlag, Berlin, Germany: Springer Verlag.
7. Yoshida, K., et al., A micro fuel reformer integrated with a combustor and a microchannel evaporator. Journal of Micromechanics and Microengineering, 2006. 16(9): p. S191-S197.
8. Kim, T. and S. Kwon, MEMS fuel cell system integrated with a methanol reformer for a portable power source. Sensors and Actuators A: Physical, 2009. 154(2): p. 204-211.
9. Delsman, E.R., Microstructured reactors for a portable hydrogen production unit. 2005: Technische Universiteit Eindhoven.
10. Tuckerman, D.B. and R.F.W. Pease, Corrections to "High performance heat sinking for VLSI". Electron Device Letters, IEEE, 1981. 2(8): p. 213-213.
11. Meysenc, L., et al., A high heat flux IGBT micro exchanger setup. Ieee Transactions on Components Packaging and Manufacturing Technology Part A, 1997. 20(3): p. 334-341.
12. Lorenzen, D., et al., Micro thermal management of high-power diode laser bars. Ieee Transactions on Industrial Electronics, 2001. 48(2): p. 286-297.
13. Schutze, J., H. Ilgen, and W.R. Fahrner, An integrated micro cooling system for electronic circuits. Industrial Electronics, IEEE Transactions on, 2001. 48(2): p. 281-285.
14. Birur, G.C., et al. Micro/nano spacecraft thermal control using a MEMS-based pumped liquid cooling system. 2001.
15. Birur, G.C. and P. Bhandari, Mars Pathfinder Active Heat Rejection System: Successful Flight Demonstration of a Mechanically Pumped Cooling Loop. SAE transactions, 1998. 107: p. 692-696.
16. Abe, Y., et al., Pool boiling of a non-azeotropic binary mixture under microgravity. International Journal of Heat and Mass Transfer, 1994. 37(16): p. 2405-2413.
17. Sun, C.L. and V.P. Carey, Marangoni effects on the boiling of 2-propanol/water mixtures in a confined space. International Journal of Heat and Mass Transfer, 2004. 47(25): p. 5417-5426.
18. Abe, Y., Self-Rewetting Fluids. Annals of the New York Academy of Sciences, 2006. 1077(1): p. 650-667.
19. Sun, C.L. and M.S. Shi, Marangomi effects on the flow boiling of methanol/water mixtures in microchannels, in The 19th international symposium on transport phenomena. 2008: Reykjavik, Iceland.
20. Haendler, B.E., et al. Evaporation of Methanol/Water Mixtures in Microchannels. 2003: ASME.
21. Moore, G.E. Lithography and the future of Moore's law. 1995.
22. Chou, C.-M., 對流式漸擴微流道沸騰熱傳散熱技術應用於高效率電子元件之研究, in Dept. of Engineering and System Science. 2010, NTHU: Hsinchu.
23. Lin, P.H., Convective boiling of methanol-water mixtures in a single diverging micro-channel, in Engineering and system science. 2010, NTHU: Hsinchu. p. 140.
24. Ohe, S., Vapor-liquid equilibrium data. 1989, Tokyo, Japan: Kodansha.
25. Schreiber, L.B. and C.A. Eckert, Use of Infinite Dilution Activity Coefficients with Wilson's Equation. Industrial & Engineering Chemistry Process Design and Development, 1971. 10(4): p. 572-576.
26. Sivagnanam, P. and Y.B.G. Varma, Subcooled boiling of binary mixtures under conditions of forced convection. Experimental Thermal and Fluid Science, 1990. 3(5): p. 515-522.
27. Peng, X.F., G.P. Peterson, and B.X. Wang, Flow boiling of binary mixtures in microchanneled plates. International Journal of Heat and Mass Transfer, 1996. 39(6): p. 1257-1264.
28. McGillis, W.R., et al., Boiling binary-mixtures at subatmospheric pressures. Intersociety Conference on Thermal Phenomena in Electronic Systems - Theme : Thermal Engineering in Integrated Design Systems. 1992. 127-136.
29. McGillis, W.R. and V.P. Carey, On the role of marangoni effects on the critical heat flux for pool boiling of binary mixtures. Journal of Heat Transfer-Transactions of the Asme, 1996. 118(1): p. 103-109.
30. Chai, L.H., X.F. Peng, and D.J. Lee, Interfacial effects on nucleate boiling heat transfer of binary mixtures. International Journal of Thermal Sciences, 2001. 40(2): p. 125-132.
31. Haendler, B.E., et al., Evaporation of methanol/water mixtures in microchannels. Micro-Electro-Mechanical Systems (Mems) - 2003, 2003: p. 507-514.
32. Lin, P.-H., Convective Boiling of Methanol-Water Mixtures in a Single Diverging Micro-channel, in Dept.of Engineering and System Science. 2010, NTHU: Hsinchu.
33. Tsou, M.-S., Convective Boiling of Ethanol-Water Mixtures in a Single Diverging Micro-channel, in Dept. of Engineering and System Science. 2010, NTHU: Hsinchu.
34. Scriven, L.E. and C.V. Sternling, The Marangoni Effects. Nature, 1960. 187(4733): p. 186-188.
35. Hovestreijdt, J., The influence of the surface tension difference on the boiling of mixtures. Chemical Engineering Science, 1963. 18(9): p. 631-639.
36. McGrew, J.L., F.L. Bamford, and T.R. Rehm, Marangoni Flow: An Additional Mechanism in Boiling Heat Transfer. Science, 1966. 153(3740): p. 1106-1107.
37. Ohta, H., et al., Nucleate boiling of low-concentration alcohol aqueous solutions for the development of thermal management systems in space. Microgravity Science and Technology, 2007. 19(3): p. 141-143.
38. D'Aubeterre, A., R. Da Silva, and M.E. Aguilera, Experimental study on Marangoni effect induced by heat and mass transfer. International Communications in Heat and Mass Transfer, 2005. 32(5): p. 677-684.
39. Zhang, N. and D.F. Chao, Models for enhanced boiling heat transfer by unusual Marangoni effects under microgravity conditions. International Communications in Heat and Mass Transfer, 1999. 26(8): p. 1081-1090.
40. Petrovic, S., T. Robinson, and R.L. Judd, Marangoni heat transfer in subcooled nucleate pool boiling. International Journal of Heat and Mass Transfer, 2004. 47(23): p. 5115-5128.
41. Fujita, Y. and Q. Bai, Critical heat flux of binary mixtures in pool boiling and its correlation in terms of Marangoni number. International Journal of Refrigeration-Revue Internationale Du Froid, 1997. 20(8): p. 616-622.
42. Kandlikar, S.G., Two-phase flow patterns, pressure drop, and heat transfer during boiling in minichannel flow passages of compact evaporators. Heat transfer engineering, 2002. 23(1): p. 5-23.
43. Qu, W. and I. Mudawar, Measurement and prediction of pressure drop in two-phase micro-channel heat sinks. International Journal of Heat and Mass Transfer, 2003. 46(15): p. 2737-2753.
44. Chang, K.H. and C. Pan, Two-phase flow instability for boiling in a microchannel heat sink. International Journal of Heat and Mass Transfer, 2007. 50(11-12): p. 2078-2088.
45. Kandlikar, S.G., Heat transfer mechanisms during flow boiling in microchannels. Journal of Heat Transfer, 2004. 126: p. 8.
46. Zhang, L., et al., Enhanced nucleate boiling in microchannels, in Fifteenth Ieee International Conference on Micro Electro Mechanical Systems, Technical Digest. 2002. p. 89-92.
47. Zhang, L.A., et al., Phase change phenomena in silicon microchannels. International Journal of Heat and Mass Transfer, 2005. 48(8): p. 1572-1582.
48. Lu, C.T. and C. Pan, A highly stable microchannel heat sink for convective boiling. Journal of Micromechanics and Microengineering, 2009. 19(5).
49. Lu, C.T. and C. Pan, Convective boiling in a parallel microchannel heat sink with a diverging cross section and artificial nucleation sites. Experimental Thermal and Fluid Science, 2010.
50. Chein, R. and J. Chen, Numerical study of the inlet/outlet arrangement effect on microchannel heat sink performance. International Journal of Thermal Sciences, 2009. 48(8): p. 1627-1638.
51. Bergles, A.E. and S.G. Kandlikar, On the nature of critical heat flux in microchannels. Journal of Heat Transfer-Transactions of the Asme, 2005. 127(1): p. 101-107.
52. Kosar, A., C.J. Kuo, and Y. Peles, Suppression of boiling flow oscillations in parallel microchannels by inlet restrictors. Journal of Heat Transfer-Transactions of the Asme, 2006. 128(3): p. 251-260.
53. Wang, G.D., P. Cheng, and A.E. Bergles, Effects of inlet/outlet configurations on flow boiling instability in parallel microchannels. International Journal of Heat and Mass Transfer, 2008. 51(9-10): p. 2267-2281.
54. Kandlikar, S.G., et al., Stabilization of flow boiling in microchannels using pressure drop elements and fabricated nucleation sites. Journal of Heat Transfer-Transactions of the Asme, 2006. 128(4): p. 389-396.
55. Wang, X.Q., A.S. Mujumdar, and C. Yap, Effect of bifurcation angle in tree-shaped microchannel networks. Journal of Applied Physics, 2007. 102(7): p. 073530-073530-8.
56. Henning, T., et al., Low-Frequency Instabilities in the Operation of Metallic Multi-Microchannel Evaporators. Heat transfer engineering, 2007. 28(10): p. 834-841.
57. Steinke, M.E. and S.G. Kandlikar, Control and effect of dissolved air in water during flow boiling in microchannels. International Journal of Heat and Mass Transfer, 2004. 47(8-9): p. 1925-1935.
58. Dolan, J.W., Mobile-Phase Degassing - Why, When, and How, in LC GC 1999, LCGC: Riverton, NJ. p. 908-912.
59. Mandelbrot, B.B., The fractal geometry of nature/Revised and enlarged edition. New York, WH Freeman and Co., 1983, 495 p., 1983. 1.
60. Bejan, A. and S. Lorente, The constructal law and the thermodynamics of flow systems with configuration. International Journal of Heat and Mass Transfer, 2004. 47(14-16): p. 3203-3214.
61. Murray, C.D., The physiological principle of minimum work applied to the angle of branching of arteries. The Journal of General Physiology, 1926. 9(6): p. 835.
62. Sherman, T.F., On connecting large vessels to small. The meaning of Murray's law. The Journal of General Physiology, 1981. 78(4): p. 431.
63. Murray, C.D., The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proceedings of the National Academy of Sciences of the United States of America, 1926. 12(3): p. 207.
64. Ahmad, T. and I. Hassan, Experimental Analysis of Microchannel Entrance Length Characteristics Using Microparticle Image Velocimetry. Journal of Fluids Engineering, 2010. 132(4): p. 041102.
65. Laermer, F. and A. Schilp, Method of anisotropically etching silicon. 1996, US Patent 5,501,893.
66. Judy, J.W., Microelectromechanical systems (MEMS): fabrication, design and applications. Smart materials and Structures, 2001. 10: p. 1115.
67. Wallis, G. and D.I. Pomerantz, Field Assisted Glass Metal Sealing. Journal of Applied Physics, 1969. 40(10): p. 3946-3949.
68. Hwang, J., F. Tseng, and C. Pan, Ethanol-CO2 two-phase flow in diverging and converging microchannels. International journal of multiphase flow, 2005. 31(5): p. 548-570.
69. Lin, P., B. Fu, and C. Pan, Critical heat flux on flow boiling of methanol-water mixtures in a diverging microchannel with artificial cavities. International Journal of Heat and Mass Transfer, 2011.