簡易檢索 / 詳目顯示

研究生: 何青原
Ching Yuan Ho
論文名稱: 奈米級快閃記憶體矽化鎢閘極之穿隧氧化層與閘極間介電層之研究與應用
Study of Tunnel Oxide and Inter-poly Dielectric with WSix Gate for Application in Nano-scale NAND Flash Memory Technology
指導教授: 連振炘
ChenHsin Lien
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 90
中文關鍵詞: 浮停閘快閃記憶體穿隧氧化層淺溝渠絕緣閘極間介電層電漿氮化
外文關鍵詞: floating gate NAND flash, tunnel oxide, shallow trench isolation, interpoly dielectric, plasma nitridation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文在探討藉由製程整合最佳化與新穎技術的引用,繼續微縮奈米級非揮發性記憶體的可行性。異常穿隧氧化層增長已分析清楚並可因淺溝渠絕緣製程改良而得到較好的可靠度改善。因耦合能力降低而使閘極間介電層之功能受限,可用電漿氮化來強化,同時,也有評估氧化鋁做作為未來閘極間介電層材料。製程設計可緩和字元線的尺寸效應,並因低電阻而可得到高寫入速度。高深寬比的位元線接觸窗因為矽基底漏失而造成嚴重接觸窗漏電流,選擇性矽磊晶當作金屬矽化之犧牲層以降低接觸窗電流。結合製程改良與新技術應用,浮停閘快閃記憶體可延展至五十奈米以下。
    首先,以高密度電漿方法做自我對準淺溝渠絕緣填入時有水氣產生,最後造成穿隧氧化層不正常再生長,並有可能導致穿隧氧化層惡化;最佳化淺溝渠絕緣整合技術提出來減緩水氣侵入穿隧氧化層。其次,對奈米記憶胞而言,控制閘與浮停閘之間的耦合能力隨尺寸微縮而逐漸降低,因此寫入與抹除速度將面臨嚴峻挑戰;電漿氮化閘極間介電層被提出來強化閘間之耦合能力與寫入抹除速度;此外,電漿氧化也被提出來解決資料保存問題。高介電材料當做未來閘極間介電層之評估,以二氧化矽-三氧化二鋁-二氧化矽疊堆薄膜取代傳統閘極間介電層材質,也被用來研究熱抵抗性,低漏電及電子捕獲特性。再者,為了矽化鎢之側邊突出與操作速度問題改善,降低矽化鎢之片電阻及製程整合之最佳化也有做深入探討。最後,選擇性矽磊晶成長技術用來評估降低位元線接觸窗漏電流並且無電阻之損失。
    採用我們的研究結果,傳統浮停閘快閃記憶體結構俱有延展至五十奈米以下之能力。


    The objective of this dissertation is to investigate the feasibility of continued scaling for nanoscale floating gate NAND flash memory by means of integration optimization and novel process application. The analysis of anomalous tunnel oxide re-growth has been clarified and has obtained good reliability from shallow trench isolation modification. The functionality of interpoly dielectric layer constrained by coupling ratio reduction is enhanced using plasma nitridation method; simultaneously, aluminum oxide is evaluated as candidate for future interpoly dielectric material. The size effect of word line is mitigated by using process flow design, and then the low sheet resistance is proposed for achieving fast programming speed. The bit line contact with high aspect ratio structure suffered from severe junction leakage owing to silicon substrate loss; a novel selective epitaxial silicon growth technology is proposed as salicide sacrifice layer for junction leakage current reduction. To incorporate our process modification with novel technologies, the floating gate NAND can be easily extend to sub- 50 nm generation.
    First of all, the advanced high-density plasma (HDP) method for self-aligned shallow trench isolation (SA-STI) suffers from existed moisture during trench gap filling, and then induces abnormal tunneling oxide re-growth; consequently, it probably exhibits poor tunnel oxide qualities. The optimal STI integrated process is proposed to mitigate moisture encroachment of tunnel oxide. Secondly, for nano-scaling dimension of memory cell, coupling capability between control gate and floating gate is gradually degraded, thus program / erase speed both face critical challenge; plasma nitridation of interpoly dielectric are proposed to enhance gate’s coupling and program / erase speed. Besides, solutions of retention problem by oxidation process of bottom oxide are provided. To evaluate higher dielectric constant material as future IPD candidate, SiO2-Al2O3-SiO2 (OAO) stacked film instead of conventional IPD material is studied for thermal resistance, lower current leakage and less electron trap. Thirdly, sheet resistance (Rs) reduction of WSix gate as well as integrated gate process optimization is explored in detail for WSix extrusion investigation and operation speed improvement. Consequently, the selective epitaxial growth silicon (SEG) technique is evaluated to reduce junction leakage for bit line contact without sacrificing contact resistance.
    To adopt our studying results, the conventional floating fate NAND flash structure is capable of extending to 50 nm node and beyond.

    Abstract Ⅰ Contents Ⅲ List of Tables Ⅵ List of Figures Ⅶ Chapter 1 Introduction 1 1-1 Challenge of dimension scaling 1 1-2 Object and outline 3 Chapter 2 Tunnel Oxide Characteristics with Shallow Trench Isolation Integrated Process 6 2-1 Introduction 6 2-2 Edge Encroachments of Tunnel Oxide 7 2-3 Suppressions of Edge Encroachments 8 2-4 Summary 11 Chapter 3 Characteristics of Inter-poly Dielectric and Data Retention by Plasma Methods 16 3-1 Introduction 16 3-2 Effects of conventional interpoly dielectric by plasma nitridation 17 3-3 Reliability Improvement of Data Retention by Oxidation Plasma 18 3-4 Summary 19 Chapter 4 Evaluation of SiO2-Al2O3-SiO2 as interpoly dielectric 26 4-1 Introduction 26 4-2 Physical properties of aluminum oxide by RTP anneal 27 4-3 Electrical analysis of OAO stack films 28 4-4 Summary 29 Chapter 5 Optimization of Integrated Process for WSix Gate 38 5-1 Introduction 38 5-2 Optimized process for WSix gate extrusion 39 5-3 Sheet resistance reduction of WSix gate 39 5-4 Device verification by sidewall oxidation protection 41 5-5 Summary 41 Chapter 6 Selective epitaxial growth in high aspect ratio contact 54 6-1 Introduction 54 6-2 Process window of high aspect contact by SEG technique 55 6-3 Electrical analysis of high aspect contact by SEG technique 56 6-4 Summary 56 Chapter 7 Conclusions 65 7-1 Edge encroachment and suppression of tunnel oxide 65 7-2 Improvement of Inter-Poly Dielectric Characteristics 66 7-3 Evaluation of SiO2-Al2O3-SiO2 for future Interpoly Dielectric 67 7-4 Investigation of Sidewall Oxidation on WSix Gates 68 7-5 SEG in High Aspect Ratio Contact 69 Appendix Process flow introduction 71 Reference 78 Publication List 87

    [1] International Technology Roadmap for semiconductor, ITRS 2007 edition.
    [2] P. K. Bondy, “Moore’s law governs the silicon revolution,” Proc. IEEE, Vol. 86, pp.78-81, Jan. 1998
    [3] G. E. Moore, “Cramming more components onto integrated circuit,” Electronics, Vol. 38, pp.114-117, Apr. 1965.
    [4] B. Govoreanu, D. P. Brunco, and J. Van Houdt, “Scaling down the interpoly dielectric for next generation flash memory: challenges and opportunities,” Solid-St. Electronics, vol. 49, pp. 1841-1848, 2005
    [5] Anchuan Wang, Jason Bloking, Linlin Wang, Manoj Vellaikal, Jin Ho Jeon, Young S Lee and Harry S Whitesell, “Extending HDP for STI Fill to 45nm with IPM,” IEEE, ISSM, 2007, pp462-466.
    [6] T. M. Pan, T. F. Lei, W. L. Yang, C. M. Cheng, and T. S. Chao, “High Quality Interpoly-Oxynitride Grown by NH3 Nitridation and N2O RTA Treatment,” IEEE Electron Device Lett., vol. 22, pp. 68-70, Feb. 2001. (3.1-9)
    [7] C. H. Kao, C. S. Lai, and C. L. Lee, ”The TEOS oxide deposited on phosphorus in-situ/POCl3 doped polysilicon with rapid thermal annealing in N2O,” IEEE Trans. Electron Devices, vol. 45, no. 2, pp. 1927 - 1933, Sept. 1998.
    [8] J. H. Klootwijk, M. H. H. Weusthof, H. Van. Kranenburg, P. H. Woerlee, and H. Wallinga, “Improvements of deposited interpolysilicon dielectric characteristics with RTP N2O-anneal,” IEEE Electron Device Lett., vol. 17, pp. 358-359, July. 2000.
    [9] K. Prall, “Scaling non-volatile memory below 30nm,” in IEEE NVSMW, 2007, pp. 5-9.
    [10] H. Yang, H. Kim, S.-I. Park, J. Kim, S.-H. Lee, J.-K. Choi, D. Hwang, C. Kim, M. Park, K.-H. Lee, Y.-K. Park, J. K. Shin, and J.-T. Kong, “Reliability issues and models of sub-90nm NAND Flash memory cells,” in Int. Conf. on Solid-State and Integrated-Circuit Technology, 2006, pp. 760-762.
    [11] S. Aritome, S. Satoh, T. Maruyama, H. Fatanabe, S. Shuto, G. J. Hemink, R. Shirota, S. Watanabe and F. Masuoka, “A 0.67μm2 self-aligned shallow trench isolation cell (SA-STI Cell),” in IEDM Tech. Dig., 1994, pp. 61-64.
    [12] Seiichi Aritome, “Advanced Flash memory technology and trends for file storage application,” in IEDM Tech. Dig., 2000, pp. 763-766.
    [13] Bikram Kapoor, M. Ziaul Karim, and Anchuan Wang, “Hydrogen assisted HDP CVD deposition process for aggressive gap-fill technology,” U.S. Patent No. 6808748, Oct. 26, 2004.
    [14] S. D. Nemani, Y. S. Lee, E. Y. Yieh, A. Wang, J. T. Bloking, and L.-T. Han, “Integrated process modulation (IPM) a novel solution for gapfill with HDP-CVD,” U.S. Patent No. 0243693, Oct. 18, 2007.
    [15] E. Biermann, H. H. Berger, P. Linke and E. A. Irene, “Oxide growth enhancement on highly N-type doped silicon under stream oxidation,” J. Electrochem. Soc., vol. 143, no. 4, pp. 1434-1451, Apr. 1996.
    [16] H. J. L. Forstner, F. Nouri, and C. Olsen, “In-situ steam generation for shallow trench isolation for sub-100nm device,” in IEEE Int. Conf. on Advanced Thermal Processing of Semiconductors, 2003, pp. 163-166.
    [17] Y.-B. Park, and D. K. Schroder, “Degradation of thin tunnel gate oxide under constant Fowler-Nordheim current stress for a Flash EEPROM,” IEEE Trans. Electron Devices, vol. 45, no. 6, pp. 1361- 1368, Jun. 1998.
    [18] C. Pan, K. J, Wu, P. P. Freiberger, A. Chatterjee and G. Sery, “A scaling methodology for oxide-nitride-oxide interpoly dielectric for EPROM applications,” IEEE Trans. Electron Devices, Vol. 37, pp.1439-1443, June 1990.
    [19] C. S. Pan, K. Wu, D. Chin, G. Sery and J. Kiely, “High-Temperature Loss Mechanism in a Floating-Gate EPROM with a Oxide-Nitride-Oxide (ONO) Interpoly Stacked Dielectric,” IEEE Trans. Electron Devices, Vol. 12, pp.506-509, September 1991.
    [20] P. Candelier, B. De Salvo, F. Martin, B. Guillaumot, F. Mondon, G. Reimbold, “Thinning Oxide-Nitride-Oxide Interpoly Dielectric (11-13nm) for 0.25 um Flash Cell Memories,” Solid- State Device Research Conf, 1997, Proc. 22-24 September 1997 Page(s):264 - 267
    [21] C. S. Pan, K. Wu, and G. Sery, “Physical Origin of Long-Term Charge Loss in Floating Gate EPROM with an Interpoly Oxide-Nitride-Oxide Stacked Dielectric,” IEEE Electron Device Lett.,, Vol. 12, pp.51-52, February 1991.
    [22] S. Mori, E. Sakagami, H. Araki, Y. Kaneko, K. Narita, Y. Ohshima, N. Arai and K. Yoshikawa, “ONO Inter-Poly Dielectric Scaling for Nonvolatile Memory Applications,” IEEE Trans. Electron Devices, vol. 38, no. 2, pp. 386 - 391, February. 1991.
    [23] C. S. Lai, T. F. Lei, and C. L. Lee, “The Characteristics of polysilicon oxide grown in pure N2O,” IEEE Trans. Electron Devices, vol. 43, pp.326-331, Feb. 1996.
    [24] W. L. Yang, T. S. Chao, C. M. Cheng, T. M. Pan, and T. F. Lei, “High Quality Interpoly Dielectrics Deposited on the Nitrided-Polysilicon for Nonvolatile Memory Devices,” IEEE Trans. Electron Devices, Vol. 48, pp.1304-1309, July 2001.
    [25] T. M. Pan, T. F. Lei, W. L. Yang, C. M. Cheng, and T. S. Chao, “High Quality Interpoly-Oxynitride Grown by NH3 Nitridation and N2O RTA Treatment,” IEEE Electron Device Lett., vol. 22, pp. 68-70, Feb. 2001.
    [26] C. H. Kao, C. S. Lai, and C. L. Lee, ”The TEOS oxide deposited on phosphorus in-situ/POCl3 doped polysilicon with rapid thermal annealing in N2O,” IEEE Trans. Electron Devices, vol. 45, no. 2, pp. 1927 - 1933, Sept. 1998.
    [27] P. Candelier, F. Mondon, B. Guillaumot, G. Reimbold, and F. Martin, “Simplified 0.35-um Flash EEPROM Process Using High-Temperature Oxide (HTO) Deposited by LPCVD as Interpoly Dielectrics and Peripheral Transistor Gate Oxide,“ IEEE Electron Device Lett., vol. 18, pp. 306-308, July. 1997.
    [28] J. H. Klootwijk, M. H. H. Weusthof, H. Van. Kranenburg, P. H. Woerlee, and H. Wallinga, “Improvements of deposited interpolysilicon dielectric characteristics with RTP N2O-anneal,” IEEE Electron Device Lett., vol. 17, pp. 358-359, July. 2000.
    [29] K. Kim, “Technology for sub-50 nm DRAM and NAND Flash Manufacturing,” IEDM Tech. Dig., 2005, p. 323.
    [30] S. Mori, Y. Y. Araki, M. Sato, H. Meguro, H. Tsunoda, E. Kamiya, K. Yoshikawa, N. Arai and E. Sakagami, “Thickness Scaling Limitation Factors of ONO Interpoly Dielectric for Nonvolatile Memory Devices,” IEEE Trans. Electron Device 43 (1996) 47.
    [31] Y. Y Chen, and C. H. Chien, “Thickness Scaling and Reliability Comparison for the Inter-poly High-k Dielectrics,” IEEE Electron Device Lett. 28 (2007) 700.
    [32] W. J. Zhu, T. Tamagawa, M. Gibson, T. Furukawa, and T. P. Ma, “Effect of Al Inclusion in HfO2 on the Physical and Electrical Properties of the Dielectrics,” IEEE Electron Device Lett. 23 (2002) 649.
    [33] G. Molas, H. Grampeix, J. Buckley, M. Bocquet, X. Garros, F. Martin, J. P. Colonna, P. Brianceau, V. Vidal, M. Gely, B. De Salvo, S. Deleonibus, C. Bongiorno and S. Lombardo, “In-depth Investigation of HfAlO Layers as Interpoly Dielectrics of Future Flash Memories,” Proc. ESSDERC, 2006, p. 242.
    [34] J. R. Power, Y. Gong, G. Tempel, E. O. Andersen, W. Langheinrich, D. Shum, R. Strenz, L. Pescini, R. Kakoschke, K. van de Zanden, R. Allinger, “ Improved Reliability of a High-k IPD Flash Cell through use of a Top-oxide,” Workshop. 21st. Non-Volatile Semiconductor Memory Workshop, 2007, p. 27
    [35] A. H. Miranda, R. van Schaijk, M. van Duuren, N. Akil, Golubovic and D. S. Golubovic, “Reliability Comparison of Al2O3 and HfSiON for use as Interpoly Dielectric in Flash Arrays,” Proc. ESSDERC, 2006, p. 234.
    [36] D. Wellekens, P. Blomme, B. Govoreanu, J. D. Vos, L. Haspeslagh, J. V. Houdt, D. P. Brunco, K. van der Zanden, “Al2O3 Based Flash Interpoly Dielectrics: a Comparative Retention Study,” Proc. ESSDERC, 2006, p. 238.
    [37] B. Govoreanu, D. Wellekens, L. Haspeslagh, J. De Vos, and J. Van Houdt, “Investigation of the low-field leakage through high-k interpoly dielectric stacks and its impact on nonvolatile memory data retention,” IEDM Tech. Dig., 2006, p. 479.
    [38] E. Cimpoiasu, S. K. Tolpygo, X. Liu, N. Simonian, J. E. Lukens, and K. K. Likharev, “Aluminum oxide layers as possible components for layered tunnel barriers,” J. Appl. Phys. 96 (2004) 1088.
    [39] W. Steinhoegl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt, “Scaling Laws for the Resistivity Increase of sub-100nm Interconnects,” Proc. Int. Conf. Simulation of Semiconductor Processes and Devices, 2003, p. 27
    [40] J. H. Park, S. H. Hur, J. H. Leex, J. T. Park, J. S. Sel, J. W. Kim, S. B. Song, J. Y. Lee, J. H. Lee, S. J. Son, Y. S. Kim, M. C. Park, S. J. Chai, J. D. Choi, U. I. Chung, J. T. Moon, K. T. Kim, K. Kim, and B. Il Ryu, “8Gb MLC(Multi-Level Cell) NAND Flash Memory using 63nm process Technology,” IEDM Tech. Dig., 2004, p. 873.
    [41] Y. S. Yim, K. S. Shin, S. H. Hur, J. D. Lee, I. G. Balk, H. S. Kim, S. J. Chai, E. Y. Choi, M. C. Park, D. S. Eun, S. B. Lee, H. J. Lim, S. P. Youn, S. H. Lee, T. J. Kim, H. S. Kim, K. C. Park and K. N. Kim, “70nm NAND Flash Technology with 0.025um2 Cell Size for 4Gb Falsh Memory,” IEDM Tech. Dig., 2003, p. 819.
    [42] H. S. Kim, S. D. Lee, S. M. Lee, I. S. Yeo, and S. K. Lee, “A Gate Electrode Fabrication Technique Using Dichlorosilance-based W-Polycide with Monosilance-based WSix Nucleation Layer,” Electrochem. Solid-State Lett. 2 (1999) 88.
    [43] D. G. Park, N. J. Son, J. Y. Kim, and W. S. Lee, “Effects of RTA and WSix-polycide Gate Processes on MOSFET Reliability for Giga-bit Scale DRAMs,“ IEEE IRW Final Rep, 2000, p. 125.
    [44] S. G. Telford, M. Eizenberg, M. Chang, A. K. Sinha, and J. Egashira,” Chemically Vapor Deposited Tungsten Silicide Films Using Dichlorosilane in a Single-Wafer Reactor,” J. Electrochem. Soc. 140 (1993) 3689.
    [45] S. W. Park, D. J. Kim, C. D. Dong, N. Y. Kwak, Y. T. Kong, C. H. Lee, S. C. Lee, and S. H. Park, “Effect of annealing ambient on WSix (X=2.3) sidewall deformation and contact resistance in Dichlorosilance-based W-polycide gate,” J. Vac. Sci. Technol. B 19 (2001) 1186.
    [46] E. H. Sondheimer: Adv. Phys., 1952.
    [47] W. Steinhoegl, G. Schindler, and M. Engelhardt, “Comprehensive Study of Copper Wires with Lateral Dimensions of 100nm and Smaller,” Semiconductor International, May 2005, p. 34.
    [48] A. F. Mayadas and M. Shatzkes, “Electrical-Resistivity Model for polycrystalline Films: The Case of Arbitrary Reflection at External Surfaces.” Phys. Rev. B l (1970) 1382.
    [49] Hajime Nagano, Kiyotaka Miyano, Takashi Yamada, Ichiro Mizushima, Robustness of a Selective Epitaxial-Growth Process of Silicon and Its Application to the Fabrication of a High-Quality Hybrid SOI Wafer, IEEE, Transactions of Semiconductor Manufacturing, Vol, 18, NO, 1, February 2005.
    [50] Kah-Wee, Ang, King-Jien Chui, Anuj Madan, Lai- Yin Wong, Chih-Hang Tang, N. Balasubramanian, Ming-Fu Lee, Ganesh S. Samudra, Yee-Chia Yeo, Strained Thin-Body p-MOSFET with Condensed Silicon-Germanium Source/Drain for Enhanced Drive Current Performance, IEEE Electron Device Lett, VOL. 28, NO. 6, June 2007
    [51] Hsiang-Jen Huang, Kun-Ming Chen, Chun-Yen Chang, Liang-Po Chen, Cuo-Wei Huang, Tiao-Yuan Huang, Reduction of Source/Drain Series Resistance and Its Impact on Device Performance for PMOS Transistors with Raised Si1-xGex Source/Drain.
    [52] Takumi Nakahata, Kohei Suguhara, Shigemitsu Maruno, Yuji Abe, Tatsuo Ozeki, Optimization of process conditions of selective epitaxial growth for elevated source/drain CMOS transistor, Journal of crystal growth 243 (2002) 87-93.
    [53] Takumi Nakahata, Kohei Sugihara, Taisuke Furukawa, Yasutaka Nishioka, Shigemitsu Maruno, Yuji Abe, Yasunori Tokuda, Shinichi Satoh, Improvement of alignment tolerance against contact hole etching by growing of underlying silicon-selective epitaxial layer, Microelectronic Engineering 56 (2001) 281-287.
    [54] Woo-Seok Cheong, Low-Resistance Polysilicon Process in Contact Application for High Density Devices, Journal of Electronic Materials. Vol. 32, No. 4, 2003.
    [55] Woo-Seok Cheong, Seok-Kiu Lee, Jae-Sung Roh, Selective silicon growth on nitride for silicon-plugging process in LPCVD, Journal of crystal Growth 254 (2003) 329-335.
    [56] H. Hada, T. Tatsumi, K.Miyanaga, S. Iwao, H. Mori, K. Koyama, A Self-aligned Contact Technology Using Anisotropical Selectivel Epitaxial Silicon For Giga-Bit DRAMs, Electron Devices Meeting (IEDM Technical Digest, 1995), pp65-668.
    [57] Tetsuya Ikuta, Yuki Miyanami, Shigeru Fujita, Hayato Iwamoto, Shingo Kadomura, Takayoshi Shimura, Heiji Watanabe, Kiyoshi Yasutake, Heavy arsenic doping of silicon grown by atmospheric pressure selective epitaxial chemical vapor deposition, Science and Technology of Advanced Materials 8 (2007) 142-145.
    [58] Yuan Taur, Jack Yuan-Chen Sun, Dan Moy, L. K, Wang, Bijan Davari, Stephen P. Klepner, Chung-Yu ting, Source-Drain Contact Resistance in CMOS with Self-Aligned TiSi2, IEEE Transactions Electron Devices, VOL. ED-34, NO. 3, MARCH 1987.
    [59] Yong-Sik Yim, et. al., 70nm NAND Flash Technology with 0.025µm2 Cell Size for 4Gb Flash Memory, IEDM Tech. Dig., pp819-822, 2003
    [60] Jong-Ho Park, et. al., 8Gb MLC (Multi-Level Cell) NAND Flash Memory using 63nm Process Technology, IEDM Tech. Dig., pp873-876, 2004

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE