研究生: |
黃建元 |
---|---|
論文名稱: |
接觸點電阻式記憶元件應用於新型隨機亂數產生器之研究 A Contact Resistive Random Access Memory Based True Random Number Generator |
指導教授: |
金雅琴
林崇榮 |
口試委員: |
金雅琴
林崇榮 施教仁 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 隨機電報雜訊 、電阻式記憶體 、隨機亂數產生器 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著網際網路越來越發達,可攜式的資料傳輸裝置也越來越普及,因此加密系統變得更為重要。為了建立一個可靠的保密系統,產生穩定且非週期性的隨機亂數便是其中一個很重要的部分。本研究提出透過接觸點電阻式記憶元件所產生的隨機電報雜訊,來產生隨機亂數,藉此基礎來設計能產生真正亂數的新型隨機亂數產生器;跟傳統的隨機亂數產生器相比,新型隨機亂數產生器可以有效的降低電路面積及功率損耗。
本論文使用的雜訊源為隨機電報雜訊,取代傳統在設計隨機亂數產生器上常使用的熱雜訊。因為隨機電報雜訊擁有較大的振幅(大於通道電流的百分之一),可節省後端電路設計上的複雜度,但相對於熱雜訊,較難以在金屬氧化物半導體場效應電晶體上量測到,因此使用接觸點電阻式記憶元件來做為研究的雜訊源裝置。相較於金屬氧化物半導體場效應電晶體,接觸點電阻式記憶元件有較小的面積,且因其傳輸方式是屬於閘極電流的形式,因此隨機電報雜訊的影響會更明顯且更易被後序放大處理。更重要一點,接觸點電阻式記憶元件與CMOS邏輯製程完全相容,不需額外的光罩或製程步驟。
在電路最佳化設計上,因隨機電報雜訊之高位準及低位準比值,不一定為一比一,因此需要設計機率修正電路。並使用NIST提供的測試套件,可更進一步驗證隨機電報雜訊的亂數性,來證實新型隨機亂數產生器的可靠性,進而確定應用在數位傳輸加密上的可能性。
With the popularization of the Internet, data transmission has become more convenient and highly mobile. In order to prevent data theft, data encryption system is essential to modern communication chips. A stable and True Random Number Generator (TRNG) is a key element to ensure the security of transmitted data.
TRNG based on the trapping and de-trapping process in the oxide defects has been proposed in recent years. Generating random numbers using electron trapping has several advantages. First, as the source of this random process occurs naturally, hence the resulting random number is aperiodic. In addition, the output is generally insensitive to temperature. Random number generator circuits depend on random latching of inverter pair can subject to mismatch effects. In a MOSFET, random telegraph noise (RTN) refers to the drain current fluctuation (ID-RTN) as a result of the change in the amount of carriers flowing from source to drain. These RTN signals with discrete drain current levels is generally very small and can lead to misleading results after amplifications.
In this paper, we proposed a TRNG based on the RTN signals found in the contact resistive random access memory (CRRAM) device. As reported in previous studies, the resistance levels of both the high and low resistance states are subject to high RTN, leading to large read current noises as a results of electron trapping in the conductive pathway. These RTN signals from the embedded CRRAM cells is much larger than ID-RTN, which allows CRRAM to be more appropriate source for generating true random number for encryption circuitry.
[1] Z.Gutterman et al, “Analysis of the Linux RNG”, IEEE Symposium on Security and Privacy, pp. 371 - 385, May 2006
[2] Yuan Heng Tseng, Chia-En Huang, C. -H. Kuo, Y. -D. Chih, Chrong Jung Lin, “High Density and Ultra Small Cell Size of Contact ReRAM (CR-RAM) in 90nm CMOS Logic Technology and Circuits”, IEDM, 2009
[3] Yuan Heng Tseng, Wen Chao Shen, Chia-En Huang, Chrong Jung Lin, Ya-Chin King, “Electron Trapping Effect on the Switching Behavior of Contact RRAM Devices through Random Telegraph Noise Analysis”, IEDM, 2010
[4] 方勝鴻著, “無線通訊之單晶片CMOS低雜訊放大器設計”, 碩士論文-國立清華大學電子工程研究所, 2000
[5] Christian Monzio et al, "Statistical Model for Random Telegraph Noise in Flash Memories", IEEE Transactions on Electron Devices, Vol. 55, No. 1, January 2008
[6] Andrea Chimenton, Cristian Zambelli, Piero Olivo, "A New Methodology for Two-Level Random-Telegraph-Noise Identification and Statistical Analysis", IEEE Electron Device Letters, Vol. 31, No. 6, June 2010
[7] Seungwon Yang, Hochul LEE, and Hyungcheol Shin, "Simultaneous Extraction of Locations and Energies of Two Independent Traps in Gate Oxide From Four-Level Random Telegraph Signal Noise", Japanese Journal of Applied Physics, Vol. 47, No. 4, pp. 2606 – 2609, 2008
[8] Chia-Yu, Chen, Qiushi Ran, Hyun-Jin Cho, Andreas Kerber, Yang Liu, Ming-Ren Lin, and Robert W. Dutton, “Correlation of Id- and Ig-Random Telegraph Noise to Positive Bias Temperature Instability in Scaled High-κMetal Gate n-type MOSFETs”, IRPS, pp. 3A.2.1 – 3A.2.6, April 2011
[9] Marco Bucci, Lucia Germani, Raimondo Luzzi, Alessandro Trifiletti, Mario Varanonuovo, “High-Speed Oscillator-Based Truly Random Number Source for Cryptographic Applications on a Smart Card ICMarco” Computers, IEEE Transactions on, Vol. 52,No. 4, pp. 403 – 409, April 2003
[10] Craig S. Petrie, J. Alvin Connelly, “A Noise-Based IC Random Number Generator for Applications in Cryptography”, Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on, Vol. 47, No. 5, pp. 615 - 621, May 2000
[11] B. Jun and P. Krocher, “The Intel RNG”, White Paper, http://www.cryptography.com/intelRNG.pdf, 1999
[12] R. Brederlow, et al, “A Low-Power True Random Number Generator using Random Telegraph Noise of Single Oxide-Traps”, ISSCC, 2006
[13] D. J. Kinniment, E.G.Chester, “Design of an On-Chip Random Number Generator using Metastability”, ESSCIRC, pp. 595 - 598, Sept. 2002
[14] Carlos Tokunaga, David Blaauw, Trevor Mudge, “True Random Number Generator with a Metastability-Based Quality Control”, Solid-State Circuits, IEEE Journal of, Vol.43, No. 1, pp. 78 – 85, Jan. 2008
[15] S. Srinivasan, et, “A 4Gbps 0.57pJ/bit Process-Voltage-Temperature Variation Tolerant All-Digital True Random Number Generator in 45nm CMOS”, VLSI Design, 2009
[16] Shinichi Yasuda, Hideki Satake, Tetsufumi Tanamoto, Ryuji Ohba, Ken Uchida, and Shinobu Fujita, “Physical Random Number Generator Based on MOS Structure”, Solid-State Circuits, IEEE Journal of, Vol.39, No. 8, pp. 1375 – 1377, Aug. 2004
[17] S. Fujita, K. Uchida, S. Yasuda, R. Ohba, H. Nozaki, T. Tanamoto, “Si Nanodevices for Random Number Generating Circuits for Cryptographic Security”, ISSCC, 2004
[18] Mari Matsumoto et al, “1200μm2 Physical Random-Number Generators Based on SiN MOSFET for Secure Smart-Card Application”, ISSCC, 2008
[19] National Institute of Standards and Technology, “A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications”, Pub 800-22, 2001
[20] Byoungchan Oh, Heung-Jae Cho, Heesang Kim, and Hyungcheol Shin, “Observation of Three-Level Random Telegraph Noise in GIDL Current of Saddle-Fin Type DRAM Cell Transistor” Memory Workshop (IMW), 2010 IEEE International, pp. 1 – 2, May 2010
[21] Yuan Heng Tseng, Wen Chao Shen, Chrong Jung Lin, “Modeling of Electron Conduction in Contact RRAM (CR-RAM) Devices as Random Telegraph Noise”, J. Appl. Phys., 2012, (accepted)
[22] Terai, Yukihiro Sakotsubo, Yukihiro Saito, Setsu Kotsuji, and Hiromitsu Hada, “Memory-State Dependence of Random Telegraph Noise of Ta2O5/TiO2 Stack ReRAM”, Electron Device Letters, Vol. 31, No. 11, November 2010
[23] Bjzhika, “A Membership and ID card function advantages”, http://www.bjzhika.com/page/article/6679.htm, 2009