研究生: |
周孫安 Chou, Sun-An |
---|---|
論文名稱: |
氮化鋯薄膜經真空熱處理之氧化行為與防蝕性之研究 The Oxidation Behavior and Corrosion Resistance of ZrN Thin Films Heat Treated in Vacuum |
指導教授: |
黃嘉宏
Huang, Jia-Hong 喻冀平 Yu, Ge-Ping |
口試委員: |
黃嘉宏
喻冀平 李志偉 林郁洧 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 104 |
中文關鍵詞: | 二氧化鋯 、氮化鋯 、熱處理 、非平衡磁控濺鍍 、相變化 |
外文關鍵詞: | zirconium oxide, zirconium nitride, heat treatment, unbalanced magnetron sputtering, phase transformation |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的在於探討氮化鋯薄膜經熱處理過後的氧化行為以及防蝕性質。首先利用非平衡磁控濺鍍系統將氮化鋯薄膜鍍著於AISI 304 不鏽鋼基材上,之後在1000C、真空(4 × 10-6 Torr)的環境下進行1到4小時的熱處理。X光繞射圖顯示,熱處理氮化鋯的相組成為氮化鋯、單斜晶氧化鋯和正方晶氧化鋯。而在4小時的熱處理之後,氮化鋯依然是薄膜中的主要相。另外,在縱深分佈中發現薄膜表面以及薄膜和基材界面處都有一層氧化鋯。相變化後殘餘的氮化鋯則在薄膜中間的部分,使整個薄膜的結構像是多層層狀結構。薄膜和基材界面處的氧化鋯的成因可能是由於高溫下基材的應力釋放。在1小時的熱處理後,正方晶氧化鋯層形成於界面處。單斜晶氧化鋯層則形成於表面處以及鄰接正方晶氧化鋯層和單斜晶氧化鋯層的氮氧化鋯層中,而單斜晶氧化鋯層和氮氧化鋯層中氮化鋯轉變成單斜晶氧化鋯的相變化也導致薄膜增加50%的厚度。隨著熱處理時間加長,薄膜的厚度依然維持定值,指出後續的氧化主要是氮化鋯和氮氧化鋯轉變成正方晶氧化鋯,相變化所造成體積上的變化也由於大的壓應力而被限制住。薄膜的抗蝕性由動態極化掃描、500小時鹽霧實驗以及電化學阻抗來測定。結果顯示熱處理氮化鋯擁有很好的抗蝕性,特別是在重量百分濃度5%的鹽水中。薄膜的腐蝕電流密度隨著熱處理時間的增長而下降,並在熱處理2小時後下降至1000倍。而在500小時鹽霧實驗後,經過熱處理氧化的氮化鋯的腐蝕面積也隨著熱處理時間的增加而減少,並在熱處理4小時後減少至3%。
The purpose of this study was to investigate the oxidation behavior and corrosion resistance of heat-treated ZrN thin films. ZrN thin films were deposited on the 304 stainless steel by unbalanced magnetron sputtering system (UBMS), and then heat treated to grow ZrO2 at 1000C in vacuum (4 × 10-6 Torr) over the duration ranging from 1 to 4 hours. The results of XRD showed that the phase constituents of the heat-treated ZrN were ZrN, m-ZrO2 and t-ZrO2, where ZrN was still the major phase in the thin film even after 4-hr heat treatment. Furthermore, the compositional depth profiles indicated that there were two layers of ZrO2 on the film surface and at film/substrate interface, respectively. The retained ZrN was in the middle part of thin film and the entire thin film displayed a multilayer structure. The ZrO2 layer at film/substrate interface may result from the stress relief of substrate at high temperature. In the 1-hr duration, t-ZrO2 layer was formed at interface, while m-ZrO2 layer was formed on the film surface and Zr(N,O) layers containing m-ZrO2 formed next to t-ZrO2 and m-ZrO2 layers, where the transformation from ZrN to m-ZrO2 led to about 50% of film thickening. The film thickness remained constant with further increase of annealing duration, indicating that the oxidation mainly progressed by the formation of t-ZrO2 at the expense of ZrN or Zr(N,O), where the volume change of phase transformation is restricted by the large compressive stress. The corrosion behavior was determined by potentiodynamic polarization scan, 500-hr salt spray test and electrochemical impedance spectroscopy. The results show that the heat-treated ZrN exhibited excellent corrosion resistance, especially in 5 wt. % NaCl solution. The corrosion current density decreased with increasing annealing duration and reached up to 1000 times after annealing in vacuum for 2 hours. The corrosion area of the oxidized ZrN after 500-hr salt spray test also decreased with the increasing heat treatment duration and downs to 3% after 4-hr heat treatment.
[1] L. Shi, C.Sun, P. Gao, F. Zhou, W. Liu, "Mecahanical properties and wear and corrosion resistance of electrodeposited Ni-Co/SiC nanocomposite coating", Appl. Surf. Sci., 252 (2006) 3591.
[2] X. Sun, Z. Jiang, S. Xin, Z. Yao, "Composition and mechanical properties of hard ceramic coating containing α-Al2O3 produced by microarc oxidation on Ti-6Al-4V alloy", Thin Solid Films, 471 (2005) 194.
[3] Mauro A. Soto-Oviedo, Olacir A. Araújo, Roselena Faez, Mirabel C. Rezende, Marco-A. De Paoli, " Antistatic coating and electromagnetic shielding properties of a hybrid material based on polyaniline/organoclay nanocomposite and EPDM rubber", Synth. Met., 156 (2006) 1249.
[4] W.J. Chou, G.P. Yu, J.H. Huang, "Corrosion behavior of TiN-coated 304 stainless steel", Corros. Sci., 43 (2001) 2023.
[5] W.J. Chou, G.P. Yu, J.H. Huang, "Mechanical properties of TiN thin film coatings on 304 stainless steel substrate", Surf. Coat. Technol., 149 (2002) 7.
[6] J.H. Huang, K.H. Chang, G.P. Yu, "Synthesis and characterization of nanocrystalline ZrNxOy thin films on Si by ion plating", Surf. Coat. Technol., 201 (2007) 6404.
[7] J.H. Huang, Z.E. Tsai, G.P. Yu, "Mechanical properties and corrosion resistance of nanocrystalline ZrNxOy coatings on AISI 304 stainless steel by ion plating", Surf. Coat. Technol., 202 (2008) 4992.
[8] M. Atik, P. De Lima-Neto, L.A. Avaca, M.A. Aegerter, "Sol-Gel Thin Films for Corrosion Ptotection", Ceram. Int., 21 (1995) 403.
[9] F.L. Perdomo, P. De Lima-Neto, M.A. Aegerter, L.A. Avaca, "Sol-Gel Deposition of ZrO2 Films in Air and in Oxygen-Free Atmospheres for Chemical Protection of 304 Stainless Steel: A Comparative Corrosion Study", J. Sol-Gel Sci. Technol., 15 (1999) 87.
[10] E. Djurado, E. Meunier, "Synthesis of Doped and Undoped Nanopowders of Tetragonal Polycrystalline Zirconia (TPZ) by Spray Pyrolysis", J. Solid State Chem., 141 (1998) 191.
[11] J.H. Huang, T.C. Lin, G.P. Yu, " Phase transition and mechanical properties of ZrNxOy thin films on AISI 304 stainless steel", Surf. Coat. Technol., 206 (2011) 107.
[12] P.H. Huang, The Phase Transition and Corrosion Resistance of N-doped ZrO2 Thin Films Deposited by HCD-IP, Master Thesis, National Tsing Hua University, R.O.C., 2011.
[13] J.W. Hsieh, Growth of ZrO2 by Heat Treating ZrN Thin Film under Controlled Atmosphere, Master Thesis, National Tsing Hua University, R.O.C., 2012.
[14] M. Atik, M.A. Aegerter, "Corrosion resistant sol-gel ZrO2 coatings on stainless steel", J. Non-Cryst. Solids, 147&148 (1992) 813.
[15] H. Li, K. Liang, L. Mei, S. Gu, S. Wang, "Oxidation protection of mild steel by zirconia sol-gel coatings", Mater. Lett., 51 (2001) 320.
[16] G.I. Cubillos, J.J. Olaya, M. Bethencourt, G. Cifredo, G. Blanco, "Resistance to Corrosion of Zirconia Coatings Deposited by Spray Pyrolysis in Nitrided Steel", J. Therm. Spray Technol., 22 (2013) 1242.
[17] S. Ben Amor, B. Rogier, G. Baud, M. Jacquet, M. Nardin, "Characterization of zirconia films deposited by r.f. magnetron sputtering", Mater. Sci. Eng., 57 (1998) 28.
[18] N.L. Zhang, Q. Wan, Z.T. Song, Q.W. Shen, X.R. Zhu, C.L. Lin, "Hugh-Quality ZrO2 Thin Films Deposited on Silicon by High Vacuum Electron Beam Evaporation", Chin. Phys. Lett., 19 (2002) 395.
[19] J.P. Holgadp, J.P. Espinós, F. Yubero, A. Justo, M. Ocaña, J. Benı́tez, A.R. González-Elipe, "Ar stabilisation of the cubic/tetragonal phases of ZrO2 in thin films prepared by ion beam induced chemical vapour depositon", Thin Solid Films, 389, (2001) 34.
[20] J.H. Choi, H.G. Kim, S.G. Yoon, "Effects of the reaction parameters on the deposition characteristics in ZrO2 CVD", J. Mater. Sci., 3 (1992) 87.
[21] Kelly, P.J. and R.D. Arnell, "Magnetron sputtering: a review of recent developments and applications", Vac., 2000. 56(3): p. 159-172.
[22] A. Hidaka, J. Nakamura, J. Sugimoto, "Influence of thermal properties of zirconia shroud on analysis of PHEBUS FP10 bundle degradation test with ICARE2 code", Nucl. Eng. Des., 168 (199) 361.
[23] F. Cernushi, S. Ahmaniemi, P. Vuoristo, T. Mäntylä, "Modelling of thermal cinductivity of porous materials: application to thick thermal barrier coatings", J. Eur. Ceram. Soc., 24 (2004) 2657.
[24] R.F. Geller, P.J. Yavorsky, "Effect of Some Oxide Additions on Thermal-Length Changes of Zirconia", J. Res. Natl. Stand., 35 (1945) 87.
[25] O.J. Whittemore, N.N. Ault, "Thermal Expansion of Various Ceramic Materials to 1500°C ", J. Am. Ceram. Soc., 39 (1956) 443.
[26] B. Liang, C. Ding, "Thermal shock resistances of nanostructured and conventional zirconia coatings deposited by atmospheric plasma spraying", Surf. Coat. Technol., 197 (2005) 185.
[27] T.K. Yeh, Y.C. Chien, B.Y. Wang, C.H. Tsai, "Electrochemical characteristics of zirconium oxide treated Type 304 stainless steels of different surface oxide structures in high temperature water", Corros. Sci., 50 (2008) 2327.
[28] D. Lee, H. Choi, H. Sum, D. Choi, H. Hwang, M.J. Lee, S.A. Seo, I.K. Yoo, "Resistance switching of the nonstoichiometric zirconium oxide for nonvotaile memory applications", IEEE Elec. Dev. Lett, 26 (2005) 719.
[29] C.S. Hwang, H.J. Kima, "Deposition and characterization of ZrO2 thin films on silicon substrate by MOCVD", J. Mater. Res., 8 (1993) 1361.
[30] L. Chih-Yang, W. Chen-Yu, W. Chung-Yi, L. Tzyh-Cheang, Y. Fu-Liang, H. Chenming, T. Tseung-Yuen, "Effect of Top Electrode Material on Resistive Switching Properties of ZrO2 Film Memory Devices", IEEE Elec. Dev. Lett., 29 (2007) 366.
[31] W. Guan, S. Long, R. Jia, M. Liu, "Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide", Appl. Phys. Lett., 91 (2007) 062111.
[32] X. Wu, P. Zhou, J. Li, L.Y. Chen, H.B. Lv, Y.Y. Lin, T.A. Tang, "Reproducible unipolar resistance switching in stoichiometeric ZrO2 films", Appl. Phys. Lett., 90 (2007) 183507.
[33] J. Zhu, T.L. Li, B. Pan, L. Zhou, Z.G. Liu, "Ehnanced dielectric properties of ZrO2 thin films prepared in nitrogen ambient by pulsed laser deposition", J. Phys. D: Appl. Phys., 36 (2003) 389.
[34] H.J. Cho, Y.D. Kim, D.S. Park, E. Lee, C.H. Park, J.S. Jang, K.B. Lee, H.W. Kim, Y.J. Ki, I.K. Han, Y.W. Song, "New TIT capacitor with ZrO2/Al2O3/ZrO2 dielectrics for 60 nm and below DRAMs", Solid-State Electron., 51 (2007) 1529.
[35] Y.K. Park, S.H. Lee, K.H. Kim, D.K. Kim, S.C. Yang, B.Y. Song, Y.S. Sung, H.S. Bynu, W.S. Yang, K.H. Lee, S.H. Park, C.S. Hwang, T.Y. Chung, W.S. Lee, "Fully Integrated 56 nm DRAM Technology for 1 Gb DRAM", VLSI Tech. Dig., 10B-4 (2007) 190.
[36] M. Copel, M. Gribelyuk, E. Gusev, "Structure and stability of ultrathin zirconium oxide layers on Si(001)", Appl. Phys. Lett., 76 (2000) 436.
[37] W.J. Qi, R. Nieh, B.H. Lee, L.G. Kang, Y. Jeon, J.C. Lee, "Electrical and reliability characteristics of ZrO2 deposited directly on Si for gate dielectric application", Appl. Phys. Lett., 77 (2000) 3269.
[38] J.P. Chang, Y.S. Lin, "Dielectric property and conduction mechanism of ultrathin zirconium oxide films", Appl. Phys. Lett., 79 (2001) 3666.
[39] T.S. Jeon, J.M. White, D.L. Kwong, "Thermal stability of ultrathin ZrO2 films prepared by chemical vapor deposition on Si(100)" , Appl. Phys. Lett., 78 (2001) 368.
[40] S.W. Nam, J.H. Yoo, H.Y. Kim, S.K. Kang, D.H. Ko, C.W. Yang, H.J. Lee, M.H. Cho, J.H. Ku, "Study of ZrO2 thin films for gate oxide applications", J. Vac. Sci. Technol. A., 19 (2001) 1720.
[41] S. Venkataraj, O. Kappertz, C. Liesch, R. Detemple, R. Jayaval, M. Wuttig, "Thermal stability of sputtered zirconium oxide films", Vac., 75 (2004) 7.
[42] N.Q. Minh, "Ceramic Fuel Cells", J.Am. Ceram. Soc., 76 (1993) 563.
[43] JCPDS PDF#73441
[44] JCPDS PDF#3652357
[45] JCPDS PDF#491642
[46] W.W. Davison, R.C. Buchanan, in: M.F. Yan (Ed.), Advance in Ceramics vol. 26, American Ceramics Society, Columbus, OH, 1989, pp. 513.
[47] M. Ghanashyam Krishna, K. Narasimha Rao, S. Mohan, "Structural and optical properties of zirconia thin films", Thin Solid Films, 193-194 (1990) 690.
[48] A. Emeline, G.V. Kataeva, A.S. Litke, A.V. Rudakova, V.K. Ryabchuk, N. Serpone, "Spectroscopic and Photoluminescene Studies of a Wide Band Gap Insulating Material: Powdered and Colloidal ZrO2 Sols", Langmuir, 14 (1998) 5011.
[49] S. Venkataraj, O. Kappertz, H. Weis, R. Jayavel, M. Wuttig, "Structural and optical properties of thin zirconium oxide films prepared by reactive direct current magnetron sputtering", J. Appl.Phys., 92 (2002) 3599.
[50] Z.W. Zhao, B.K. Tay, G.Q. Yu, S.P. Lau, "Optical properties of filtered cathodic vacuum arc-deposited zirconium oxide thin films", J. Phys.: Condens. Matter, 15 (2003) 7707.
[51] K. Maca, H. Hadraba, J. Cihlar, "Electrophoretic deposition of alumina and zirconia: I. Single-component systems", Ceram. Int., 30 (2004) 843.
[52] A.H. Heuer, M. Ruhle, in: N. Claussen, M. Ruhle, A.H. Heuer (Eds.), Advances in ceramics, Science and Technology of Zirconia II, vol. 12, American Ceramic Society, Columbus, OH, 1984.
[53] J.P. Abriata, J. Garcés, R. Versaci, "The O-Zr (Oxygen-Zirconium) system", J. Phase Equil., 7 (1986) 116.
[54] F.C. Nonamaker, Chem. Met. Eng., 31 (1924) 151.
[55] W.D. Sproul, "Very Hugh-Rate Reactive Sputtering of TiN, ZrN and HfN", Thin Solid Films, 107 (1983) 141.
[56] H. Holleck, "Material Selection for Hard Coatings", J. Vac. Sci. & Technol. A., 4 (1986) 2661.
[57] U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, J. Aromaa, E. Ristolainen, "Improved Corrosion-Resistance of Physical Vapor-Deposition Coated TiN and ZrN", Surf. Coat. Technol., 41 (1990) 191.
[58] B. Navinsek, P. Panjan, I. Milosev, "Industrial applications of CrN (PVD) coatings, deposited at high and low temperatures", Surf. Coat. Technol., 97(1997) 182.
[59] E. Budke, J. Krempel-Hesse, H. Maidhof, H Schüssler, "Decorative hard coatings with improved corrosion resistance", Surf. Coat. Technol., 112 (1999) 108.
[60] JCPDS PDF#350753
[61] JCPDS PDF#650961
[62] J.E. Hove, W.C. Riley, Modern Ceramic: Some Principles and Concepts, John Wiley, 1965, pp. 352.
[63] L.E. Toth, Transition Metal Carbides and Nitrides, Academic press, 1971, pp. 188.
[64] J.H. Huang, K.W. Lau, G.P. Yu, "Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering", Surf. Coat. Technol., 191 (2005) 17.
[65] E. Török, A.J. Perry, L. Chollet, W.D. Sproul, "Young's modulus of TiN, TiC, ZrN and HfN", Thin Solid Films, 153 (1987) 37.
[66] A.J. Perry, V. Valvoda, D. Rafaja, "X-ray residual stress measurement in TiN, ZrN and HfN films using the Seemann-Bohlin method", Thin Solid Films, 214 (1992) 169.
[67] A.J. Perry, "A contribution to the study of poisson's ratios and elasticconstants of TiN, ZrN and HfN", Thin Solid Films, 193-194 (1990) 463.
[68] P. Jin, S. Maruno, "Evaluation of Internal Stress in Reactively Sputter-Deposited ZrN Thin Films", Jpn. J. Appl. Phys., 30 (1991) 1463.
[69] W.J. Chou, G.P. Yu, J.H. Huang, "Effect of heat treatment on the structure and properties of ion-plated TiN films", Surf. Coat. Technol., 168 (2003) 43.
[70] J.H. Huang, K.J. Yu, P. Sit, G.P. Yu, "Heat treatment of nanocrystalline TiN films deposited by unbalanced magnetron sputtering", Surf. Coat. Technol., 200 (2006) 4291.
[71] S.C. Ferreira, E. Ariza, L.A. Rocha, J.R. Gomes, P. Carvalho, F. Vaz, A.C. Fernandes, L. Rebouta, L. Cunha, E. Alves, Ph. Goudeau, J.P. Rivière, "Tribocorrosion behaviour of ZrOxNy thin films for decorative applications", Surf. Coat. Technol., 200 (2006) 6634.
[72] E. Ariza, L.A. Rocha, F. Vaz, L. Cunha, S.C. Ferreira, P. Carvalho, L. Rebouta, E. Alves, Ph. Goudeau, J.P. Rivière, "Corrosion resistance of ZrNxOy thin films obtained by rf reactive magnetron sputtering", Thin Solid Films, 469-470 (2004) 274.
[73] W.L Pan, G.P. Yu, J.H. Huang, "Mechanical properties of ion-plated TiN films on AiSI D2 steel", Surf. Coat. Technol., 110 (1998) 111.
[74] B.F. Chen, W.L. Pan, G.P. Yu, J. Hwang, J.H. Huang, "On the corrosion behavior of TiN-coated AiSI D2 steel", Surf. Coat. Technol., 111 (1999) 16.
[75] J.Y. Chen, G.P. Yu, J.H. Huang, "Corrosoin behavior and adhesion of ion-plated TiN films on AISI 304 steel", Mater. Chem. Phys., 65 (2000) 310.
[76] J.H. Huang, F.Y. Ouyang, G.P. Yu, "Effect of film thickness and Ti interlayer on the structure and properties of nanocrystalline TiN thin films on AISI D2 steel", Surf. Coat. Technol., 201 (2007) 7043.
[77] P. Scherrer, Gött. Nachr., 2 (1918) 98.
[78] L.V. Azaroff, M.J. Buerger, The powder method in X-ray crystallography McGraw-Hill 1958, pp. 233.
[79] JCPDS PDF#651022
[80] JCPDS PDF#591089
[81] D. Briggs, M.P. Seah, Pratical Surface Analysis: Auger and X-ray photoelectron spectroscopy, 2nd ed., John Wiley & Sons, Chichester, 1990.
[82] http:/www.cem.msu.edu/~cem924sg/XPSASFs.html.
[83] W. C. Oliver, G. M. Pharr, J. Mater. Res., 7 (1992) 1564.
[84] J.F. Shackelfold, CRC Materials Science and Engineering Handbook, CRC Press, 1994, pp.
[85] W.C. Oliver, G.M. Pharr, Mater. Res. Soc., 7 (1992) 1564.
[86] C.H. Ma, J.H. Huang, H. Chen, "Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction", Thin Solid Films, 418 (2002) 73.
[87] ASM, Metal Handbook, 13, ASM International, 1988, pp. 212.
[88] ASTM standards, Section 3, 1996, B117, p.4, and G85, 0.350.
[89] P. Waldfried, Electrochemistry for Materials Science, Elsevier Science, 2008.
[90] T. Young, Philon. Trans. R. Soc., 9 (1805) 255.
[91] C.T. Chen, Y.C. Song, G.P. Yu and J.H. Huang*, "Microstructure and Hardness of HCD Ion Plated Titanium Nitride Film", J.Mater. Eng. Perform., 7 (1998) 324-328.
[92] W. Qin, C. Nam, H.L. Li, J.A. Szpunar, "Tetragonal Phase Stability in ZrO2 Film Formed on Zirconium Alloys and its Effects on corrosion Resistance", Acta Materialia., 55 (2007) 1695.
[93] H. Li, K. Liang, L. Mei, S. Gu, S. Wang, "Corrosion protection of mild steel by zirconia sol-gel coatings", J. Mater. Sci. Lett., 20 (2001) 1081.
[94] L.A. Dobrzanski*, K. Lukaskowicz, D. Pakula, L. Mikula, "Corrosion resistance of multilayer and gragient coatings deposited by PVD and CVD techniques", Arch. Mater. Sci. Eng., 28 (2007) 12.
[95] L.A. Dobrzanski, K. Lukaskowicz, A. Zarychta, L. Cunha, "Corrosion resistance of multilayer coatings deposited by PVD techniques onto the brass substrate", J. Mater. Process. Technol., 164-164 (2005) 816.
[96] J.F. Marco, A.C. Agudelo, J.R. Gancedo, D. Hanžel, "Corrosion Resistance of Single TiN Layers, Ti/TiN Bilayers and Ti/TiN/Ti/TiN Multilayers on Iron Under a Salt Fog Soray (Phohesion) Test: an Evaluation by XPS.", Surf. Interface Anal., 27 (1999) 71.
[97] C. Liu, P.K. Chu, G. Lin, D. Yang, "Effects of Ti/TiN multilayer on corrosion resistance of nickel-titanium orthodontic brackets in artificial saliva", Corros. Sci., 49 (2007) 3783.
[98] C. Gu, J. Lian, G. Li, L. Niu, Z. Jiang, "High corrosion-resistant Ni-P/Ni/Ni-P multilayer coatings on steel", Surf. Coat. Technol., 197 (2005) 61.
[99] H.A. Jehn, "Improvement of the corrosion resistance of PVD hard coating-suibstrate systems", Surf. Coat. Technol., 125 (2000) 212.
[100] S. Surviliene, A. Lisowska-Oleksiak, A. Češuniene, "Effect of ZrO2 on corrosion behaviour of chromium coatings", Corros. Sci., 50 (2008) 338.
[101] L. Krusinelbaum, M. Wittmer, "Oxidation-Kinetics of ZrN Thin-Films", Thin Solid Films, 107 (1983) 111.
[102] H.N. Al-Shareef, X. Chen, D.J. Lichtenwalner, A.I. Kingon, "Analysis of the oxidation kinetics and barrier layer properties of ZrN and Pt/Ru thin films for DRAM applications", Thin Solid Films, 280 (1996) 265.
[103] F.H. Lu, W.Z. Lo, "Degradation of ZrN films at high temperature under controlled atmosphere", J. Vac. Sci. Technol. A, 22 (2004) 2071.
[104] Y.C. Chieh, W.Z. Lo, F.H. Lu, "Microstructure evolution of ZrN films annealed in vacuum", Surf. Coat. Technol., 200 (2006) 3336.
[105] I. Milošev, H.H. Strehblow, B. Navinšek, "Comparison of TiN, ZrN and CrN hard nitride coatings: Electrochemical and thermal oxidation", Thin Solid Films, 303 (1997) 246.
[106] Y. Ding, D.O. Northwood, "Tem study of the oxide-metal interface formed during corrosion of Zr-2.5wt.%Nb pressure tubing", Mater. Charact., 30 (1993) 13.
[107] J.H. Baek, Y.H. Jeong, I.S. Kim, "Effects of the accumulated annealing parameter on the corrosion characteristics of a Zr-0.5Nb-1.0Sn-0.5Fe-0.25Cr alloy", J. Nucl. Mater., 280 (2000) 235.
[108] H. Oettel, R. Wiedemann, S. Preissler, "Residual-stresses in nitride hard coatings prepared by magnetron sputtering and arc evaporation", Surf. Coat. Technol., 74-5/1-3 (1995) 273.
[109] L.G. Van Uitert, H.M. O'Bryan, M.E. Lines, H.J. Guggenheim, G. Zydzik, "Thermal expansion - An empirical correlation", Materials Research Bulletin 12/3 (1977) 261.
[110]http://www.aksteel.com/pdf/markets_products/stainless/austenitic/304_304L_Data_Sheet.pdf