研究生: |
王文心 Wang, Wen Hsin |
---|---|
論文名稱: |
探究人類老化細胞機制的特有核心基因和表觀遺傳網路中miRNA和甲基化對老化途徑的影響 Investigating specific core genetic-and-epigenetic networks for cellular mechanisms of human aging: Focus on the impact of core miRNAs and methylation on aging pathways |
指導教授: |
陳博現
Chen, Bor Sen |
口試委員: |
汪宏達
楊嘉鈴 莊永仁 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 72 |
中文關鍵詞: | 老化 |
外文關鍵詞: | aging |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於人類而言,老化是不可避免的,如何延緩老化已經成為人類努力的目標。了解老化背後的機制和原因,可以幫助我們延緩老化。這篇文章中,使用系統生物學的方法,建立老人和年輕人的蛋白質交互作用網路(PPIN)、基因調控網路(GRN)和表觀遺傳網路,即基因和表觀遺傳網路(GEN)。由外周血單核細胞的資訊,我們可以比較這兩個基因和表觀遺傳網路得到老化的機制。此外,我們也調查老化過程中,女性和男性老化機制的差異。根據主成分分析(PCA),我們使用主要網路投影(PNP)的方法,得到老人和年輕人的核心基因和表觀遺傳網路。透過比較這兩個網路,交集得到共同核心網路、差集得到特有核心網路。同樣地,女性和男性的共同核心網路和特有核心網路也可以得到。由此網路中,我們可以發現許多基因、miRNA、途徑扮演重要的角色在老化的過程中。此外,我們調查老化過程中性別的差異。根據我們的分析,老人特有核心網路中,FLNB、CDK4和ZNF274被mir-223、let-7d和mir-130a抑制,或FYN、CDK4、MAGED1和ZNF274的甲基化,是為了要彌補MAPK信號途徑、T細胞受體信號傳導途徑與神經營養蛋白信號途徑的失調,和細胞週期與細胞凋亡的故障。女性特有核心網路中,TAOK3和TRAF6被mir-141和mir-373抑制,或MAX、TAOK3和MYD88的甲基化,是為了要彌補MAPK信號途徑與Toll樣受體信號傳導途徑的失調,和免疫系統、細胞增生與代謝的故障。男性特有核心網路中,STMN1和LRRFIP2被mir-210和mir-214抑制,或SMAD4和LEF1的甲基化,無法彌補MAPK信號途徑與Wnt信號途徑的失調,和細胞週期與細胞凋亡的故障,導致癌症。我們的研究提供一個新的觀點來對藥物設計以對抗老化,也了解老化過程中男女機制的差異。
For human being, aging is inevitable. How to slow down aging has become the target of human endeavor. Understanding the reason and the underlying aging mechanisms can help us retard aging. In this study, applying systems biology approach to construct the protein-protein interaction networks (PPINs), gene regulatory networks (GRNs) and epigenetic networks, i.e. genetic and epigenetic networks (GENs), of elderly individuals and young controls, we could compare these GENs to extract the human aging mechanism by using their corresponding microarray data in peripheral blood mononuclear cells, microRNA (miRNA) data and databases-mining. In addition, we further discuss what are the different mechanisms between old females and old males from peripheral blood mononuclear cells to investigate the core genetic and epigenetic mechanism in the human aging process.
The core GENs of elderly individuals and young controls are obtained by applying principal network projection (PNP) to GENs based on Principal Component Analysis (PCA). Through the comparison between the young and elder core GENs, the common core GEN and specific core GENs are respectively acquired by the intersection and distinction of core proteins, core transcription factors (TFs), core target genes, and core miRNAs in the core GENs. Similarly, the common and specific core GENs of different gender elders are also obtained to investigate the distinctive aging mechanism between old males and old females.
From the common and specific core GENs, we found that some genes, pathways and miRNAs play important roles in the human aging process. Furthermore, we could investigate the molecular mechanisms behind them, and could also get more insight into the gender-specific changes in the human aging process. According to the results of the elder specific core GEN, the three genes, FLNB, CDK4 and ZNF274, are inhibited by mir-223, let-7d and mir-130a, and DNA methylation of FYN, CDK4, MAGED1 and ZNF274 in order to overcome dysregulations of MAPK signaling pathway, T-cell receptor signaling pathway and neurotrophin signaling pathway and dysfunctions of cell cycle and apoptosis. According to the results of the old female specific core GEN, the two genes, TAOK3 and TRAF6, are inhibited by mir-141 and mir-373, and DNA methylation of MAX, TAOK3 and MYD88 in order to overcome dysregulations of MAPK signaling pathway and Toll-like receptor signaling pathway and dysfunctions of immune system, proliferation and metabolism. According to the results of the old male specific core GEN, the two genes, STMN1 and LRRFIP2, are inhibited by mir-210 and mir-214, and DNA methylation of SMAD4 and LEF1 can’t overcome dysregulations of MAPK signaling pathway and Wnt signaling pathway and dysfunctions of cell cycle and apoptosis, resulting in cancer. We concluded that the MAPK signaling pathway plays the most important role in the human aging process. This research not only provides a new view to drug target design against aging but also investigates what are the distinctive mechanisms between old females and old males from peripheral blood mononuclear cells in the human aging process.
1. Poland, G.A., et al., A systems biology approach to the effect of aging, immunosenescence and vaccine response. Curr Opin Immunol, 2014. 29: p. 62-8.
2. Jonker, M.J., et al., Life spanning murine gene expression profiles in relation to chronological and pathological aging in multiple organs. Aging Cell, 2013. 12(5): p. 901-9.
3. Lund, J., et al., Transcriptional profile of aging in C. elegans. Curr Biol, 2002. 12(18): p. 1566-73.
4. McCarroll, S.A., et al., Comparing genomic expression patterns across species identifies shared transcriptional profile in aging. Nat Genet, 2004. 36(2): p. 197-204.
5. Zahn, J.M., et al., Transcriptional profiling of aging in human muscle reveals a common aging signature. PLoS Genet, 2006. 2(7): p. e115.
6. Jurk, D., et al., Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun, 2014. 2: p. 4172.
7. Inukai, S. and F. Slack, MicroRNAs and the genetic network in aging. J Mol Biol, 2013. 425(19): p. 3601-8.
8. Krek, A., et al., Combinatorial microRNA target predictions. Nat Genet, 2005. 37(5): p. 495-500.
9. Liang, R., D.J. Bates, and E. Wang, Epigenetic Control of MicroRNA Expression and Aging. Curr Genomics, 2009. 10(3): p. 184-93.
10. Yang, J., et al., MiR-34 modulates Caenorhabditis elegans lifespan via repressing the autophagy gene atg9. Age (Dordr), 2013. 35(1): p. 11-22.
11. Jung, M. and G.P. Pfeifer, Aging and DNA methylation. BMC Biol, 2015. 13: p. 7.
12. Zampieri, M., et al., Reconfiguration of DNA methylation in aging. Mech Ageing Dev, 2015.
13. Jones, M.J., S.J. Goodman, and M.S. Kobor, DNA methylation and healthy human aging. Aging Cell, 2015.
14. Stelzl, U., et al., A human protein-protein interaction network: a resource for annotating the proteome. Cell, 2005. 122(6): p. 957-68.
15. Rual, J.F., et al., Towards a proteome-scale map of the human protein-protein interaction network. Nature, 2005. 437(7062): p. 1173-8.
16. Wang, Y.C., et al., Interspecies protein-protein interaction network construction for characterization of host-pathogen interactions: a Candida albicans-zebrafish interaction study. BMC Syst Biol, 2013. 7: p. 79.
17. Sikora-Wohlfeld, W., et al., Assessing computational methods for transcription factor target gene identification based on ChIP-seq data. PLoS Comput Biol, 2013. 9(11): p. e1003342.
18. Lee, T.I., et al., Transcriptional regulatory networks in Saccharomyces cerevisiae. Science, 2002. 298(5594): p. 799-804.
19. Tu, C.T. and B.S. Chen, On the increase in network robustness and decrease in network response ability during the aging process: a systems biology approach via microarray data. IEEE/ACM Trans Comput Biol Bioinform, 2013. 10(2): p. 468-80.
20. Johansson, R., System modeling and identification. Prentice Hall information and system sciences series. 1993, Englewood Cliffs, NJ: Prentice Hall. xiii, 512 p.
21. Marttila, S., et al., Transcriptional analysis reveals gender-specific changes in the aging of the human immune system. PLoS One, 2013. 8(6): p. e66229.
22. Stark, C., et al., BioGRID: a general repository for interaction datasets. Nucleic Acids Res, 2006. 34(Database issue): p. D535-9.
23. Bovolenta, L.A., M.L. Acencio, and N. Lemke, HTRIdb: an open-access database for experimentally verified human transcriptional regulation interactions. BMC Genomics, 2012. 13: p. 405.
24. Zheng, G., et al., ITFP: an integrated platform of mammalian transcription factors. Bioinformatics, 2008. 24(20): p. 2416-7.
25. Hsu, S.D., et al., miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res, 2014. 42(Database issue): p. D78-85.
26. Pagano, M. and K. Gauvreau, Principles of biostatistics. 2nd ed. 2000, Pacific Grove, CA: Duxbury.
27. Chen, B.S., Tsai, K. W., Li, C. W., Using Nonlinear Stochastic Evolutionary Game Strategy to Model an Evolutionary Biological Network of Organ Carcinogenesis Under a Natural Selection Scheme. Evolutionary Bioinformatics, 2015.
28. Crow, J.F., The high spontaneous mutation rate: is it a health risk? Proc Natl Acad Sci U S A, 1997. 94(16): p. 8380-6.
29. Thomas, G.H., High male:female ratio of germ-line mutations: an alternative explanation for postulated gestational lethality in males in X-linked dominant disorders. Am J Hum Genet, 1996. 58(6): p. 1364-8.
30. Kim, E.K. and E.J. Choi, Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta, 2010. 1802(4): p. 396-405.
31. Huse, M., The T-cell-receptor signaling network. J Cell Sci, 2009. 122(Pt 9): p. 1269-73.
32. Cantrell, D.A., T-cell antigen receptor signal transduction. Immunology, 2002. 105(4): p. 369-74.
33. Reichardt, L.F., Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci, 2006. 361(1473): p. 1545-64.
34. Rane, S.G., et al., Germ line transmission of the Cdk4(R24C) mutation facilitates tumorigenesis and escape from cellular senescence. Mol Cell Biol, 2002. 22(2): p. 644-56.
35. Hauck, F., et al., Primary T-cell immunodeficiency with immunodysregulation caused by autosomal recessive LCK deficiency. J Allergy Clin Immunol, 2012. 130(5): p. 1144-1152 e11.
36. Huang, W.Y., et al., MethHC: a database of DNA methylation and gene expression in human cancer. Nucleic Acids Res, 2015. 43(Database issue): p. D856-61.
37. de Magalhaes, J.P. and O. Toussaint, GenAge: a genomic and proteomic network map of human ageing. FEBS Lett, 2004. 571(1-3): p. 243-7.
38. Zhang, W. and H.T. Liu, MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res, 2002. 12(1): p. 9-18.
39. Takeda, K. and S. Akira, TLR signaling pathways. Semin Immunol, 2004. 16(1): p. 3-9.
40. Akira, S. and K. Takeda, Toll-like receptor signalling. Nat Rev Immunol, 2004. 4(7): p. 499-511.
41. Burnichon, N., et al., MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma. Clin Cancer Res, 2012. 18(10): p. 2828-37.
42. Je, E.M., et al., Mutational and expressional analyses of MYD88 gene in common solid cancers. Tumori, 2012. 98(5): p. 663-9.
43. Tanoue, T. and E. Nishida, Docking interactions in the mitogen-activated protein kinase cascades. Pharmacol Ther, 2002. 93(2-3): p. 193-202.
44. Rao, T.P. and M. Kuhl, An updated overview on Wnt signaling pathways: a prelude for more. Circ Res, 2010. 106(12): p. 1798-806.
45. Clevers, H. and R. Nusse, Wnt/beta-catenin signaling and disease. Cell, 2012. 149(6): p. 1192-205.
46. Blackford, A., et al., SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clin Cancer Res, 2009. 15(14): p. 4674-9.
47. Houlston, R., et al., Mutations in DPC4 (SMAD4) cause juvenile polyposis syndrome, but only account for a minority of cases. Hum Mol Genet, 1998. 7(12): p. 1907-12.
48. Iyer, N.K., et al., SMAD4 mutation and the combined syndrome of juvenile polyposis syndrome and hereditary haemorrhagic telangiectasia. Thorax, 2010. 65(8): p. 745-6.
49. Takeda, H., et al., Human sebaceous tumors harbor inactivating mutations in LEF1. Nat Med, 2006. 12(4): p. 395-7.
50. Aulmann, S., et al., CTCF gene mutations in invasive ductal breast cancer. Breast Cancer Res Treat, 2003. 80(3): p. 347-52.
51. Filippova, G.N., et al., Tumor-associated zinc finger mutations in the CTCF transcription factor selectively alter tts DNA-binding specificity. Cancer Res, 2002. 62(1): p. 48-52.
52. Salzer, E., et al., Combined immunodeficiency with life-threatening EBV-associated lymphoproliferative disorder in patients lacking functional CD27. Haematologica, 2013. 98(3): p. 473-8.
53. Houtkooper, R.H., et al., The metabolic footprint of aging in mice. Sci Rep, 2011. 1: p. 134.