簡易檢索 / 詳目顯示

研究生: 陳華強
Chen, Hua Chiang
論文名稱: 鐵酸鉍薄膜之照光輔助熱製程研究
指導教授: 胡塵滌
口試委員: 呂正傑
簡昭欣
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 234
中文關鍵詞: 鐵酸鉍鐵電薄膜旋鍍法
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分別以醋酸系統和硝酸系統用溶膠-凝膠法鍍製之BFO為研究對象,探討在不同光源照光輔助並且用不同熱製程條件,對不同組成與結構之BFO薄膜的結晶行為及電性的影響,討論可能的作用機制。
    由紫外光-可見光光譜分析得知醋酸系統及硝酸系統中,鐵酸鉍溶液以及其各成份溶液的吸收界限皆隨溶液溫度上升,產生紅移現象,且紅移量與溫度呈現一指數對應關係。據此,可利用改變烘烤溫度來改變各成份的吸收界限,進而影響薄膜吸收光源產生分解反應。
    醋酸系統BCFO薄膜以150℃烘烤10min並使用UVC輔助熱處理,鐵、鉍、銫三種溶液皆可同時吸收光源產生分解反應,二次相的峰值大為減弱並提升BCFO的結晶性,為(110)、(1ī0)優選方向。而以100℃烘烤10min時可以提升薄膜緻密性,並減少二次相的生成,得到較高的崩潰電場,和較高的2Pr值。
    硝酸系統B*FO(N)薄膜,由紫外光-可見光光譜分析中發現,100℃時UVC波長小於其各成份溶液的吸收界限,以傅立葉轉換紅外線光譜分析,UVC照光輔助可有效去除殘留的C=N=O和C=O官能基。B*FO(N)-D-UVC薄膜SEM表面影像中發現孔洞明顯的消失,X光繞射分析中發現結晶性提升,為(110)、(1ī0)優選方向,鐵電特性量測中電滯曲線較為飽和。
    依據分析結果與參考相關文獻資料,推測BFO薄膜特性受紫外光影響之主要原因為溶膠-凝膠鍍膜製程中受紫外光光照效應可促進有機物的分解與揮發,影響薄膜之結晶性及表面形貌,並進一步影響其電性表現。


    摘要 2 目錄 3 表目錄 5 圖目錄 6 第一章緒論 12 1-1前言 12 1-2研究動機與方向 13 第二章文獻回顧 15 2-1鐵電薄膜簡介 15 2-1-1鐵電薄膜發展史[1] 15 2-1-2鐵電材料結晶結構特性[2,3] 15 2-1-3鐵電性質原理[6,7] 16 2-2極化現象與原理簡介 18 2-2-1極化現象與介電常數 18 2-2-2極化機制 18 2-2-3 漏電流機制[13-15] 19 2-3鐵酸鉍(BiFeO3, BFO)系統 21 2-3-1鐵酸鉍的結構與性質 21 2-3-2鐵酸鉍研究文獻回顧 23 2-3-2-1鐵酸鉍摻雜稀土元素的研究文獻 24 2-5光效應(Photo-effect) 26 2-6鐵電薄膜之紫外光輔助鍍膜製程 27 第三章實驗步驟 39 3-1基板的製備 39 3-1-1製備擴散阻絕層及黏著層 39 3-1-2製備鉑金下電極 40 3-2鐵酸鉍薄膜的製備 40 3-2-1實驗藥品 40 3-2-2製備鐵酸鉍溶膠 41 3-2-3鐵酸鉍薄膜的鍍製及照光輔助製程 42 3-2-4鐵酸鉍的熱處理 44 3-3鐵酸鉍溶膠之紫外光-可見光光譜分析(UV-Vis. Spectrum) 44 3-4鐵電薄膜特性分析 44 3-4-1物性分析 44 3-4-2電性分析 45 第四章結果與討論 54 4-0紫外光-可見光光譜分析(UV-Vis. Spectrum) 54 4-1醋酸系統鐵酸鉍薄膜 55 4-1-1EDS化學成份分析 55 4-1-2 XRD晶體結構分析 55 4-1-2-1醋酸系統BFO薄膜之XRD分析 56 4-1-2-2醋酸系統B*FO薄膜之XRD分析 56 4-1-2-3 醋酸系統BCFO薄膜之XRD分析 57 4-1-2-4不同鐵酸鉍薄膜之XRD分析 58 4-1-2-5薄膜X光繞射結晶優選方向與鐵電特性間之關係分析 59 4-1-3SEM表面顯微結構分析 59 4-1-3-1醋酸系統BFO及B*FO薄膜表面顯微結構分析 59 4-1-3-2醋酸系統BCFO薄膜表面顯微結構分析 60 4-1-3-3不同鐵酸鉍薄膜之表面顯微結構分析 61 4-1-4電流密度量測 61 4-1-4-1醋酸系統BFO薄膜電流密度量測 61 4-1-4-2醋酸系統B*FO薄膜電流密度量測 62 4-1-4-3醋酸系統BCFO薄膜電流密度量測 63 4-1-4-4不同鐵酸鉍薄膜電流密度量測 63 4-1-5鐵電特性之量測 64 4-1-5-1醋酸系統BFO薄膜鐵電特性量測 64 4-1-5-2醋酸系統B*FO薄膜鐵電特性量測 65 4-1-5-3醋酸系統BCFO薄膜鐵電特性量測 65 4-2硝酸系統鐵酸鉍薄膜 66 4-2-0硝酸系統製程條件 66 4-2-1傅立葉轉換紅外線光譜分析(FTIR Spectrum) 66 4-2-2EDS 化學成份分析 67 4-2-3 XRD晶體結構分析 67 4-2-4SEM表面顯微結構分析 68 4-2-5電流密度量測 68 4-2-6鐵電特性之量測 69 第五章結論 224 參考文獻 224

    [1]陳瀅如,"添加微細粉對鈦酸鉛鍍膜製程與特性之研究",清華大學碩士論文 (1998)
    [2] 鄭晃忠、史德智,"極大型機鐵電路之鐵電材料",電子月刊 5 (6) (1999)
    [3] 陳銘森,"鎳酸鑭電極對鋯鈦酸鉛溶凝膠製作與特性影響之研究",清華大學博士論文 (1996)
    [4] Y. H. Xu,“Ferroelectric Materials and Their Application”, North-Holland , NewYork, 102(1991).
    [5] 江長凌,林煥祐,朱智謙,”半導體製程中高介電(High K)材料的介紹”,台灣大學化研所.
    [6] 鍾為烈,鐵電體物理學 (科學出版社,1996).
    [7] M. E. Lines and A. M.Glass, Principle and applications of ferroelectrics and related materials, (Oxford University press. New York,2001).
    [8] 鐘金峰,”Preparation of BiFeO3 thin films by chemical solution deposition method “,清華大學碩士論文 (2006)
    [9] A. J. Moulson and J. M. Herbert, “Electroceramics, materials, properties and application”, p.52-55 and p.61-62 (1990).
    [10] 李雅明,”固態電子學”,全華科技 (1995)
    [11] 吳朗,”電子陶瓷-介電”,全新資訊圖書 (1994)
    [12] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, 2nd Ed. , John Wiley and Sons, New York, 1976.
    [13] Y. S. Yang, S. J. Lee, S. H. Kim, B. G. Chae, and M. S. Jang, “Schottky Barrier Effects in Electronic Conduction of Sol-Gel derived Lead Zirconate Titanate Thin Film Capactors” ,Journal of Applied Physics, Vol. 84 No.9 p5005-5011(1998).
    [14] I. Stolichnov, and A. Tagantsev, “Space-Charge Influenced-Injection Model for Conduction on Pb(ZrxTi1-x)O3 Thin Film”, Journal of Applied Physics, Vol. 84 No.6 p3216-3225 (1998).
    [15] W. L. Warren, D. Dimos, and R. M. Waser, “Degradation Mechanisms in Ferroelectric and High-Permittivity Perovskites”, MRS Bulletin, July p.40-45 (1996).
    [16] M. Ohring, “The Materials Science of Thin Films, published by Academic Press”, Inc, (1992).
    [17] D. Ivanova, M. Caron, L. Ouellet, S Blain, N.Hendrick, J. Currie, ” Structural and Dielectric Preoperties of Spin-On Barium Strontium Titanate Thin Films”, J. Appl. Phys., 77[6]2666-2671 .
    [18] Wolf, Stanley and Richard N. Tauber, Silicon Processing for the VLSI Era , Lattice Press, Sunset Beach, CA, (2000). pages 202-206.
    [19] Y. Wu, J.-g. Wan, C. Huang, Y. Weng, S. Zhao, J.-m. Liu, and G. Wang, "Strong magnetoelectric coupling in multiferroic BiFeO3-Pb(Zr0.52Ti0.48)O3 composite films derived from electrophoretic deposition," Applied Physics Letters, vol. 93, pp. 192915-3, 2008.
    [20] S. Y. Yang, L. W. Martin, S. J. Byrnes, T. E. Conry, S. R. Basu, D. Paran, L. Reichertz, J. Ihlefeld, C. Adamo, A. Melville, Y. H. Chu, C. H. Yang, J. L. Musfeldt, D. G. Schlom, J. W. Ager, Iii, and R. Ramesh, "Photovoltaic effects in BiFeO3," Applied Physics Letters, vol. 95, pp. 062909-3, 2009.
    [21] D. Lebeugle, D. Colson, A. Forget, M. Viret, P. Bonville, J. F. Marucco, and S. Fusil, "Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals," Physical Review B, vol. 76, p. 024116, 2007.
    [22]H. Schmid, "Die synthese von boraziten mit hilfe chemischer transportreaktionen," Journal of Physics and Chemistry of Solids, vol. 26, pp. 973-976, 1965.
    [23]J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, "Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures," Science, vol. 299, pp. 1719-1722, March 14, 2003 2003.
    [24] G. Catalan and J. F. Scott, "Physics and Applications of Bismuth Ferrite," Adv. Mater., vol. 21, pp. 2463-2485, Jun 2009.
    [25] I. Sosnowska, T. Peterlinneumaier, and E. Steichele, "SPIRAL MAGNETIC-ORDERING IN BISMUTH FERRITE," Journal of Physics C-Solid State Physics, vol. 15, pp. 4835-4846, 1982.
    [26]Y. H. Chu et. al., Mater.Today, 2007.
    [27] C. Ederer and N. A. Spaldin, "Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite," Physical Review B, vol. 71, Feb 2005.
    [28] M. I. Morozov, N. A. Lomanova, and V. V. Gusarov, "Specific Features of BiFeO3 Formation in a Mixture of Bismuth(III) and Iron(III) Oxides," Russian Journal of General Chemistry, vol. 73, pp. 1676-1680, 2003.
    [29] R. B. Fischer and J. P. Ellinger, "A REPLICA TECHNIQUE IN THE STUDY OF CHEMICAL PRECIPITATION PROCESSES," Journal of Applied Physics, vol. 24, pp. 1051-1053, 1953.
    [30] J. R. Teague, R. Gerson, and W. J. James, "Dielectric hysteresis in single crystal BiFeO3," Solid State Communications, vol. 8, pp. 1073-1074, 1970.
    [31] A. Z. Simoes, A. H. M. Gonzalez, L. S. Cavalcante, C. S. Riccardi, E. Longo, and J. A. Varela, "Ferroelectric characteristics of BiFeO3 thin films prepared via a simple chemical solution deposition," Journal of Applied Physics, vol. 101, pp. 074108-6, 2007.
    [32] D. Lee, M. G. Kim, S. Ryu, H. M. Jang, and S. G. Lee, "Epitaxially grown la-modified BiFeO3 magnetoferroelectric thin films," Applied Physics Letters, vol. 86, May 2005.
    [33] J. Wu, G. Kang, and J. Wang, "Electrical behavior and oxygen vacancies in BiFeO3/[(Bi1/2Na1/2)0.94Ba0.06TiO3 ]thin film," Applied Physics Letters, vol. 95, pp. 192901-3, 2009.
    [34] K. Y. Yun, M. Noda, and M. Okuyama, "Prominent ferroelectricity of BiFeO3 thin films prepared by pulsed-laser deposition," Applied Physics Letters, vol. 83, pp. 3981-3983, 2003.
    [35] R. Ueno, S. Okaura, H. Funakubo, and K. Saito, "Crystal structure and electrical properties of epitaxial BiFeO3 thin films grown by metal organic chemical vapor deposition," Jpn. J. Appl. Phys. Part 2 - Lett. Express Lett., vol. 44, pp. L1231-L1233, 2005.
    [36] Y. H. Lee, J. M. Wu, Y. C. Chen, Y. H. Lu, and H. N. Lin, "Surface chemistry and nanoscale characterizations of multiferroic BiFeO3 thin films," Electrochem. Solid State Lett., vol. 8, pp. F43-F46, 2005.
    [37] Y. Wang, Z. Li, Y. H. Lin, and C. W. Nan, "Magnetic-electric behaviors in BiFeO3 films grown on LaNiO3-buffered Si substrate," Journal of Applied Physics, vol. 106, Oct 2009.
    [38] R. Y. Zheng, X. S. Gao, Z. H. Zhou, and J. Wang, "Multiferroic BiFeO3 thin films deposited on SrRuO3 buffer layer by rf sputtering," Journal of Applied Physics, vol. 101, p. 054104, 2007.
    [39] R. Ranjith, B. Kundys, and W. Prellier, "Periodicity dependence of the ferroelectric properties in BiFeO3/SrTiO3 multiferroic superlattices," Applied Physics Letters, vol. 91, pp. 222904-3, 2007.
    [40] W. Sakamoto, H. Yamazaki, A. Iwata, T. Shimura, and T. Yogo, "Synthesis and characterization of BiFeO3-PbTiO3 thin films through metalorganic precursor solution," Jpn. J. Appl. Phys. Part 1 - Regul.Pap.Brief Commun. Rev. Pap., vol. 45, pp. 7315-7320, Sep 2006.
    [41] X. D. Qi, J. Dho, R. Tomov, M. G. Blamire, and J. L. MacManus-Driscoll, "Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3," Applied Physics Letters, vol. 86, Feb 2005.
    [42] Y. W. Li, J. L. Sun, J. Chen, X. J. Meng, and J. H. Chu, "Structural, ferroelectric, dielectric, and magnetic properties of BiFeO3/Pb(Zr0.5Ti0.5)O3 multilayer films derived by chemical solution deposition," Applied Physics Letters, vol. 87, pp. 182902-3, 2005.
    [43] H. Uchida, R. Ueno, H. Nakaki, H. Funakubo and S. Koda, Jpn. J. Appl. Phys. 44 (2005), p. 561.
    [44] D. Lee, M. G. Kim, S. Ryu, and H. M. Jang, “Epitaxially grown La-modified BiFeO3 magnetoferroelectric thin films”, Appl. Phys. Lett. 86 222903(2005).
    [45] R.K. Mishra, D.K. Pradhan, R.N.P. Choudhary and A. Banerjee, J Phys Condens Matter 20 (2008), pp. 045218–045223.
    [46]Bellakki, M. and V. Manivannan "Citrate-gel synthesis and characterization of yttrium-doped multiferroic BiFeO3." Journal of Sol-Gel Science and Technology 53(2): 184-192. (2010).
    [47] D. Damjanovic and M. Demartin, J. Phys. D: Appl. Phys. 29 (1996), pp. 2057–2060.
    [48]V. A. Khomchenko, J. A. Paixão, V. V. Shvartsman, P. Borisov, W. Kleemann, D. V. Karpinsky, and A. L. Kholkin, Scripta Mater.62, 238 (2010).
    [49] D. Kan, L. Pálová, V. Anbusathaiah, C.J. Cheng, S. Fujino, V. Nagarajan, K.M. Rabe and I. Takeuchi, Adv. Funct. Mater.20 (2010), p. 1108.
    [50] Wang X Z, Liu H R and Yan B W 2008 J. Sol-Gel Sci. Technol. 47 124.
    [51]H.R. Liu, X.Z. Wang, Solid State Commun. 148 (2008) 203–205.
    [52]Liu, J., M. Li, "Structural and multiferroic properties of the Ce-doped BiFeO3 thin films." Journal of Alloys and Compounds 493(1-2): 544-548.(2010).
    [53]Quan, Z., W. Liu, "Microstructure, electrical and magnetic properties of Ce-doped BiFeO3 thin films." Journal of Applied Physics 104(8): 084106-084110. (2008).
    [54]Liu, J., M. Y. Li, "Effect of Ce doping on the microstructure and electrical properties of BiFeO3 thin films prepared by chemical solution deposition." Journal of Physics D-Applied Physics 42(11). (2009).
    [55]Liu, J., M. Y. Li, et al. (2011). "Effects of ion-doping at different sites on multiferroic properties of BiFeO3 thin films." Applied Physics a-Materials Science & Processing 102(3): 713-717.
    [56] 陳三元,"強介電薄膜之液相化學法製作",工業材料 108,100-111 (1995).
    [57] Robert W. Schwartz, "Chemical solution deposition of perovskite thin films," Chemistry of Materials 9 (11), 2325 (1997).

    [58] H. Imai, A. Tominaga, N. Asakuma et al., "Ultraviolet-reduced reduction and crystallization of indium oxide films,"Journal of Applied Physics 85, 203 (1999)
    [59] N. Asakuma, T. Fukui, H. Hirashima et al., "Ultraviolet-laser-induced crystallization of sol-gel derived inorganic oxide films," Journal of Sol-Gel Scienceand Technology 19, 333 (2000)
    [60] N. Asakuma, H. Hirashima, and H. Imai, "Photocrystallization of amorphous ZnO,"Journal of Applied Physics92, 5707 (2002)
    [61] N. Asakuma, H. Hirashima, H. Imai et al., "Photoreduction of amorphous and crystalline ZnO films,"Japanese Journal of Applied Physics 41, 3909 (2002)
    [62] N. Asakum, H. Hirashima, M. Toki et al., "Crystallization and reduction of sol-gel-derived zinc oxide films by irradiation with ultraviolet lamp,"Journal of Sol-Gel Scienceand Technology 26, 181 (2003)
    [63] Y. Fujita and T. Kwan, "Photodesorption and photoadsorption of oxygen on zinc oxide,"Bulletin of the Chemical Society of Japan 31, 379b(1958)
    [64] V. Chakarian, T. D. Durbin, J. A. Yarmoff et al.,"Formation of surface F-centers on CaF2/Si(111)," Physical Review B 48, 18332 (1993)
    [65] K. Arai, H. Imai, H. Imagawa et al., "Two-photon processes in defect formation by excimer lasers in synthetic silica glass,"Applied Physics Letters 53, 1891 (1988)
    [66] N. Tohge, K. Shinmou, and T. Minami,"Effects of UV-irradiation on the formation of oxide thin films from chemically modified metal-alkoxides," Journal of Sol-Gel Scienceand Technology 2, 581 (1994)
    [67] H. Imai, M. Yasumori, H. Onuki et al.,"Significant densification of sol-gel derived amorphous silica films by vacuum ultraviolet irradiation,"Journal of Applied Physics 79, 8304 (1996)
    [68] J. J. Yu, J. Y. Zhang, and I. W. Boyd, "Formation of stable zirconium oxide on silicon by photo-assisted sol-gel processing," Applied Surface Science 186, 190 (2002)
    [69] Q. Fang, J. Y. Zhang, I. W. Boyd et al., "High-k dielectrics by UV photo-assisted chemical vapour deposition," Microelectronic Engineering 66, 621 (2003)
    [70] S. Y. Son, P. Kumar, R. K. Singh et al., "High efficiency nitrogen incorporation technique using ultraviolet assisted low temperature process for hafnia gate dielectric," Applied Physics Letters 92, 092906 (2008)
    [71] C. J. Kim, D. S. Yoon, Z. T. Jiang et al., "Investigation of the drying temperature dependence of the orientation in sol-gel processed PZT thin films," Journal of Materials Science 32, 1213 (1997)
    [72] G. T. Park, C. S. Park, H. E. Kim et al., "Orientation control of sol-gel-derived lead zirconate titanatefilm by addition of polyvinylpyrrolidone," Journal of Materials Research 20, 882 (2005)
    [73] A. Li, D. Wu, N. Ming et al., "Effect of processing on the characteristics of SrBi2Ta2O9 films prepared by metalorganic decomposition," Journal of Applied Physics 88, 1035 (2000)
    [74] M. L. Calzada, I. Bretos, L. Pardo et al., "Low-temperature processing of ferroelectric thin films compatible with silicon integrated circuit technology," Advanced Materials 16, 1620 (2004)
    [75] M. L. Calzada, I. Bretos, L. Pardo et al., "Low-temperature ultraviolet sol-gel photoannealing processing of multifunctional lead-titanate-based thin films," Journal of Materials Research 22, 1824 (2007)
    [76] J. Y. Hwang, S. A. Lee, S. Y. Jeong et al., "UV-exposure effect on ferroelectricity of the sol-gel processed PZT thin film," Integrated Ferroelectrics 62, 97 (2004)
    [77] S. A. Lee, S. Y. Jeong, C. R. Cho et al., "A study of UV-photolysis effects on ferroelectricity in PZT thin films," Integrated Ferroelectrics 64, 201 (2004)
    [78] S. R. Kumar, S. Habouti, M. Es-Souni et al., "Control of microstructure and functional properties of PZT thin films via UV assisted pyrolysis," Journal of Sol-Gel Science and Technology 42, 309 (2007)
    [79] Z. Huang, Q. Zhang, and R. W. Whatmore, "Structural development in the early stages of annealing of sol-gel prepared lead zirconate titanate thin films," Journal of Applied Physics 86 (3), 1662 (1999)
    [80] A. Wu, P. M. Vilarinho, I. M. Miranda Salvado et al., "Early stages of crystallization of sol-gel-derived lead zirconate titanate thin films,"Chemistry of Materials 15 (5), 1147 (2003)
    [81] S. Y. Chen and I. W. Chen, "Temperature–time texture transition of Pb(Zr1−xTix)O3 thin films: I, role of Pb-rich intermediate phases,"Journal of the American Ceramic Society 77 (9), 2332 (1994)
    [82] S. Y. Chen, "Texture evolution and electrical properties of oriented PZT thin films,"Materials Chemistry and Physics 45, 159(1996)
    [83] A. Wu, Z. Zhou, J. L. Baptista et al., "Effect of lead zirconate titanate seeds on PtxPb formation during the pyrolysis of lead zirconate titanate thin films,"Journal of the American Ceramic Society85 (3), 641 (2002)
    [84] W. Gong, J. F. Li, L. Li et al., "Effect of pyrolysis temperature on preferential orientation andelectrical properties of sol-gel derived lead zirconate titanate films,"Journal of the European Ceramic Society 24, 2977(2004)
    [85] S. Habouti • C.-H. Solterbeck • M. Es-Souni, “UV assisted pyrolysis of solution deposited BiFeO3 multiferroicthin films. Effects on microstructure and functional properties”, J Sol-Gel Sci Techn (2007) 42:257–263
    [85] Ching-Chich Leu,Ching-Pin Hsu, Cin-Guan Hong and Chen-Ti Hu“Photochemical-induced self-seeding effect on lead zirconate titanate thin film”, Journal of Materials Chemistry (2011)
    [86] S. Habouti • C.-H. Solterbeck • M. Es-Souni, “UV assisted pyrolysis of solution deposited BiFeO3 multiferroicthin films. Effects on microstructure and functional properties”, J Sol-Gel Sci Techn (2007) 42:257–263
    [87] Michelle D. Casper • Mark D. Losego •Jon-Paul Maria“Optimizing phase and microstructure of chemicalsolution-deposited bismuth ferrite (BiFeO3) thin filmsto reduce DC leakage”, J Mater Sci (2013) 48:1578–1584
    [88] A. Lahmar, K. Zhao, S. Habouti, M. Dietze, C. H. Solterbeck, and M. Es-Souni, “Off-stoichiometry effects on BiFeO3 thin films”, Solid State Ionics, vol. 202, pp. 1-5, 2011.
    [89] 林宗儒, “氧化鈰、氧化鉍、氧化鐵三種晶種層對鐵酸鉍鐵電薄膜之影響”, 清華大學碩士論文 (2012)
    [90] Y. Wang, “A large polarization in Ce-modified bismuth ferrite thin films”, Journal of Applied Physics, vol. 109, pp. 124105-4, 2011.
    [91] Mary A. Thomson, Peter J. Melling, and Anne M. Slepski “Real time monitoring of isocyanate chemistry using a fiber-optic FTIR probe”, Polymer Preprints 2001, 42(1), 310

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE