簡易檢索 / 詳目顯示

研究生: 呂典叡
Tien-Jui Lu
論文名稱: 奈米碳管免疫球蛋白生物分子檢測器之研製
Carbon nanotube based biosensor for detecting immunoglobulin G
指導教授: 柳克強
Keh-Chyang Leou
蔡春鴻
Chuen-Horng Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 95
中文關鍵詞: 奈米碳管免疫球蛋白檢測
外文關鍵詞: carbon nanotube, immunoglobulin, biosensor
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米碳管在結構上具有特殊的準一維結構、熱穩定性、還有奈米尺度下的高導電特性,具有極大的潛力應用於未來的奈米電子元件以及奈米生醫元件上。本研究分別探討IgG分子吸附在奈米碳管二極元件的表面對於奈米碳管的電性以及拉曼特徵光譜產生的影響。利用製作出來的單根奈米碳管二極元件可以量測出受到IgG分子附著於奈米碳管後導致的導通電流產生下降變化,與網狀奈米碳管元件的偵測結果1 pM下產生1%的變化相比,本研究可以達到31.25 pM下變化量最高可以達到38.9%。在濃度極低的情況下,辨識率大幅提高,應用於奈米生醫的生物分子檢測技術,能夠幫助疾病之提早發現以及診斷治療。使用三層催化劑結構,利用高溫氣相化學沉積(Thermal Chemical Vapor Deposition , Thermal CVD)的方式側向成長平貼於矽基板上的高品質單壁奈米碳管(Single-Walled Carbon nanotube , SWCNT),並且製做成奈米碳管二極元件,不僅減少製作元件的程序,與奈米碳管溶液旋塗法比較,能有效定位奈米碳管並且利用奈米碳管成長參數來控制奈米碳管的密度、長度以及直徑,也不需要高溫退火來改善奈米碳管與電極金屬之間的接觸阻抗。
    拉曼特徵譜線是一種非破壞性的量測方法,利用雷射照射於奈米碳管表面使得分子產生共振,並且比較入射光以及散射光之能量差異得到特徵譜線,可以量測出奈米碳管之RBM、D-band、G-band的訊號強弱來得知奈米碳管的品質好壞以及是否為單壁的結構,與電流量測相比,量測快速,可以節省製作成元件的繁複製程。而研究的實驗結果得出當IgG分子吸附於單壁奈米碳管的表面時,奈米碳管拉曼特徵光譜之G-band位置並不會具有固定方向平移的趨勢以及平移程度,而G-band/SiO2 的比值強弱之變化,整體比值曲線雖然隨著IgG分子數量增加,使得散射光強度減弱,造成的比值下降的趨勢,但是強度比值的下降幅度並沒有固定,因此尚無法利用此比值的下降幅度做IgG分子的定量分析。


    摘要………………………………………………………………………i 致謝……………………………………………………………………iii 目錄……………………………………………………………………vi 圖目錄…………………………………………………………………ix 表目錄…………………………………………………………………xii 第一章 緒論…………………………………………………………1 1.1 奈米碳管的結構與應用…………………………………………1 1.2 免疫球蛋白的種類及結構………………………………………5 1.3研究動機…………………………………………………………8 第二章 文獻回顧…………………………………………………10 2.1 奈米碳管生物分子檢測器……………………………………10 2.2 防止漏電流之保護層…………………………………………16 2.3 奈米碳管生物檢測的物理機制………………………………19 第三章 研究方法與實驗設備…………………………………26 3.1 研究方法………………………………………………………26 3.2 奈米碳管的成長………………………………………………26 3.2.1三層催化劑結構…………………………………………27 3.2.成長製程與機制……………………………………………29 3.3 量測用基板製程步驟…………………………………………32 3.4 奈米碳管二極元件製程步驟…………………………………35 3.5 實驗流程與量測方法…………………………………………38 3.6 實驗儀器與設備介紹…………………………………………41 第四章 結果與討論……………………………………………51 4.1 固定濃度的IgG分子溶液對奈米碳管之電性影響…………51 4.2 不同濃度的IgG分子溶液對奈米碳管之電性影響…………54 4.3 區別IgG分子對碳管以及電極的吸附影響…………………57 4.3.1 IgG分子吸附於奈米碳管對元件電性的影響…………58 4.3.2 奈米碳管吸附IgG分子的表面形貌改變………………62 4.3.3 IgG分子吸附於金屬電極對元件電性的影響…………69 4.3.4 channels組以及windows組的結果對照以及討論……71 4.4 IgG分子吸附於奈米碳管對拉曼特徵光譜之影響……………72 第五章結論與展望………………………………………………79 5.1 結論……………………………………………………………79 5.1.1 CVD合成奈米碳管製作奈米碳管二極元件優點………79 5.1.2 單根奈米碳管二極元件對生物分子檢測之優點………79 5.1.3 IgG分子吸附於奈米碳管表面為影響電流主因………80 5.1.4 IgG分子吸附於奈米碳管的拉曼特徵光譜量測………80 5.2 後續研究之可能發展…………………………………………80 5.2.1 奈米碳管的表面處理……………………………………80 5.2.2 單根的懸空奈米碳管吸附生物分子之拉曼量測………81 參考文獻……………………………………………………………82 附錄…………………………………………………………………85

    1. Iijima, S., HELICAL MICROTUBULES OF GRAPHITIC CARBON. Nature, 1991. 354(6348): p. 56-58.
    2. Bachilo, S.M., et al., Structure-assigned optical spectra of single-walled carbon nanotubes. Science, 2002. 298(5602): p. 2361-2366.
    3. Wei, B.Q., R. Vajtai, and P.M. Ajayan, Reliability and current carrying capacity of carbon nanotubes. Applied Physics Letters, 2001. 79(8): p. 1172-1174.
    4. Duesberg, G.S., et al., Growth of isolated carbon nanotubes with lithographically defined diameter and location. Nano Letters, 2003. 3(2): p. 257-259.
    5. Bachtold, A., et al., Aharonov-Bohm oscillations in carbon nanotubes. Nature, 1999. 397(6721): p. 673-675.
    6. Wong, S.S., et al., Carbon nanotube tips: High-resolution probes for imaging biological systems. Journal of the American Chemical Society, 1998. 120(3): p. 603-604.
    7. Rinzler, A.G., et al., UNRAVELING NANOTUBES - FIELD-EMISSION FROM AN ATOMIC WIRE. Science, 1995. 269(5230): p. 1550-1553.
    8. Kong, J., et al., Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature, 1998. 395(6705): p. 878-881.
    9. Hoenlein, W., New prospects for microelectronics: Carbon nanotubes. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2002. 41(6B): p. 4370-4374.
    10. Derycke, V., et al., Controlling doping and carrier injection in carbon nanotube transistors. Applied Physics Letters, 2002. 80(15): p. 2773-2775.
    11. Kang, D., et al., Oxygen-induced p-type doping of a long individual single-walled carbon nanotube. Nanotechnology, 2005. 16(8): p. 1048-1052.
    12. Kong, J., et al., Nanotube molecular wires as chemical sensors. Science, 2000. 287(5453): p. 622-625.
    13. Atashbar, M.Z., B.E. Bejcek, and S. Singamaneni, Carbon nanotube network-based biomolecule detection. Ieee Sensors Journal, 2006. 6(3): p. 524-528.
    14. Hertel, T., R.E. Walkup, and P. Avouris, Deformation of carbon nanotubes by surface van der Waals forces. Physical Review B, 1998. 58(20): p. 13870-13873.
    15. Tani, K., et al., Fabrication of antigen sensors using carbon nanotube field effect transistors. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2006. 45(6B): p. 5481-5484.
    16. Boussaad, S., et al., In situ detection of cytochrome c adsorption with single walled carbon nanotube device. Chemical Communications, 2003(13): p. 1502-1503.
    17. Artyukhin, A.B., et al., Controlled electrostatic gating of carbon nanotube FET devices. Nano Letters, 2006. 6(9): p. 2080-2085.
    18. Gui, E.L., et al., DNA sensing by field-effect transistors based on networks of carbon nanotubes. Journal of the American Chemical Society, 2007. 129(46): p. 14427-14432.
    19. Chen, R.J., et al., An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. Journal of the American Chemical Society, 2004. 126(5): p. 1563-1568.
    20. Byon, H.R. and H.C. Choi, Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications. Journal of the American Chemical Society, 2006. 128(7): p. 2188-2189.
    21. Tang, X.W., et al., Carbon nanotube DNA sensor and sensing mechanism. Nano Letters, 2006. 6(8): p. 1632-1636.
    22. Besteman, K., et al., Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Letters, 2003. 3(6): p. 727-730.
    23. Hecht, D.S., et al., Bioinspired detection of light using a porphyrin-sensitized single-wall nanotube field effect transistor. Nano Letters, 2006. 6(9): p. 2031-2036.
    24. Maroto, A., et al., Functionalized metallic carbon nanotube devices for pH sensing. Chemphyschem, 2007. 8(2): p. 220-223.
    25. Heller, I., et al., Identifying the mechanism of biosensing with carbon nanotube transistors. Nano Letters, 2008. 8(2): p. 591-595.
    26. Lee, W.Y., et al., Lateral growth of single-walled carbon nanotubes across electrodes and the electrical property characterization. Diamond and Related Materials, 2005. 14(11-12): p. 1852-1856.
    27. Li, Y.M., et al., Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. Journal of Physical Chemistry B, 2001. 105(46): p. 11424-11431.
    28. Loiseau, A., et al., Nucleation and growth of SWNT: TEM studies of the role of the catalyst. Comptes Rendus Physique, 2003. 4(9): p. 975-991.
    29. Zhang, R.Y., et al., Chemical vapor deposition of single-walled carbon nanotubes using ultrathin Ni/Al film as catalyst. Nano Letters, 2003. 3(6): p. 731-735.
    30. Chen, X.Q., et al., Aligning single-wall carbon nanotubes with an alternating-current electric field. Applied Physics Letters, 2001. 78(23): p. 3714-3716.
    31. Smith, B.W., et al., Structural anisotropy of magnetically aligned single wall carbon nanotube films. Applied Physics Letters, 2000. 77(5): p. 663-665.
    32. Franklin, N.R. and H.J. Dai, An enhanced CVD approach to extensive nanotube networks with directionality. Advanced Materials, 2000. 12(12): p. 890-894.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE