研究生: |
林威成 Wei-Cheng Lin |
---|---|
論文名稱: |
氮化鈦覆蓋層對鈦/矽反應系統的影響 Effects of TiN Capped Layer on Ti/Si Reaction System |
指導教授: |
蔡哲正
Cho-Jen Tsai |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 70 |
中文關鍵詞: | 鈦 、氮化鈦 、矽化物 、應力 |
外文關鍵詞: | Ti, TiN, silicide, stress |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
論文摘要
本研究是將Ti/Si及TiN/Ti/Si系統的試片進行升溫速率為每分鐘5℃的真空退火處理,在退火的同時,藉由臨場(In situ)曲率量測系統的量測,將可分析出試片在升溫過程應力變化的情形。此外,退火後的試片亦會進行X-光繞射儀(XRD)、四點探針(Four-Point Probe)、歐傑電子能譜儀(AES)及穿透式電子顯微鏡(TEM)的量測分析。因此,不同退火溫度所對應到的薄膜應力狀態、生成的相、電性、及微觀結構等將被解析出來,進而研究TiN覆蓋層對於Ti/Si系統的影響。
實驗結果發現,在退火溫度300~500℃之間,氧原子隨退火溫度升高而明顯的擴散進入Ti/Si系統中的Ti層,進而使得Ti晶格擴張,其對應於XRD的結果,可以看見Ti的峰值隨退火溫度的升高而往低角度偏移。而氧擴散進入Ti層的行為,使得薄膜受到一個往壓力方向的應力,片電阻亦因Ti層中氧的涵量提高而增加。然而,當覆蓋一層TiN後,氧的擴散受到了阻礙,Ti層中氧的涵量減少,因此片電阻隨退火溫度升高而增加的情形不再如Ti/Si系統明顯,而應力往壓應力方向的趨勢也不復見。
不同厚度的TiN覆蓋層對系統的影響亦受到研究,結果顯示相的轉變溫度不因改變TiN的厚度而有明顯的差異。然而,在低溫時(~300℃)可以發現矽原子在TiN較厚的試片中有較明顯的擴散行為發生,分析其原因,可能是不同厚度的TiN覆蓋層,使得試片內的應力狀態及涵氧程度有所不同,進而影響了矽原子的擴散。
Abstract
Ti/Si and TiN/Ti/Si structures were annealed in vacuum to observe the reaction sequence. The stress of the film was determined in situ by measuring the curvature of the sample during the isochronal annealing process. The phases of the film after annealing process were identified using XRD, sheet resistance measurements, AES, and TEM. A clear correlation was found between the evolution of stress and the phase formation sequence.
From the XRD data, we can find that the (002) peak of Ti shifts to low angle at 300~500℃ in the Ti/Si system. It is due to the oxygen-induced lattice expansion. The content of oxygen increases as the annealing temperatures increase, and this process let the sheet resistance increase and the stress become more compressive. For the TiN/Ti/Si systems, the TiN capped layer prevents the compressive stress developed at 300~500oC by retarding the oxygen incorporation into the Ti film.
Samples with different TiN thickness were also compared after annealed to the same temperature. At low temperature, the diffusion of Si at the Ti-Si interface is easier in the system with thicker TiN capped layer. It might relate to the situation of oxygen incorporation into the Ti film or the stress state at the Ti/Si interface. However, the temperatures at which phases start to transform are affected slightly by the thickness of TiN capped layer.
References
1. B. Hoeneisen and C. A. Mead, “Fundamental limitations in microelectronics –I. MOS Technology”, Solid State Electronics, 15, p. 819 (1972)
2. E.C. Douglas, “Advanced process technology for VLSI circuits”, Solid State Technology, 24, p. 65 (1981)
3. J. K. Hassan and H. G. Sarkary, “Lithography for VLSI: An Overview”, Solid State Technology, 25, p. 49 (1982)
4. J. F. Marshall, “New applications of tape bonding for high lead count devices”, Solid State Technology, 27, p. 175 (1984)
5. J. D. Meindl, “Interconnection limits on silicon ultra large scale integration”, Semiconductor Silicon, 86-4, p. 3 (1986)
6. S. P. Murarka, “Silicides for VLSI applications”, Academic Press, Orlando, Florida, 1 (1983)
7. P. S. Ho, “Basic problems in interconnect metallization for VLSI applications”, Proc. ROC IEDMS, Edited by L. J. Chen , p.471 (1984)
8. W. Lur and L. J. Chen, “Growth kinetics of amorphous interlayer formed by interdiffusion of polycrystalline Ti thin-film and single-crystal silicon”, Appl. Phys. Lett. 54, p. 1217 (1989)
9. M. H. Wang and L. J. Chen, “Phase formation in the interfacial reactions of ultrahigh vacuum deposited titanium thin films on (111) Si”, J. Appl. Phys. 71, p. 5918 (1992)
10. K. Maex, “Silicides for integrated circuits: TiSi2 and CoSi2”, Mater. Sci. Eng., R 11, p. 53-153 (1993)
11. J. F. Chen, L. J. Chen, “Morphological stability of TiSi2 on polycrystalline silicon”, Thin Solid Films 293, p.34 (1997)
12. H. Inui, T. Hashimoto, K. Tanaka, I. Tanaka, T. Mizoguchi, H. Adachi, M. Yamaguchi, “Defect and electronic structures in TiSi2 thin films produced by co-sputtering: Part 1: Defect analysis by transmission electron microscopy”, Acta Materialia 49, p.83 (2001)
13. H. Jeon, G. Yoon, and R. J. Nemanich, “Dependence of C49-C54 TiSi2 phase transition temperature on film thickness and Si substrate orientation”, Thin Solid Films 299, p.178 (1997)
14. S. L. Cheng, H. Y. Huang, Y. C. Peng, L. J. Chen, B. Y. Tsui, C. J. Tsai, and S. S. Guo, “Effect of stress on the growth of TiSi2 thin films on (001) Si”, Appl. Phys. Lett. 74, p.1406 (1999)
15. R. Beyers, D. Coulman, and P. Merchant, “Titanium disilicide formation on heavily doped silicon substrates”, J. Appl. Phys. 61, p. 5110 (1987)
16. J. A. Kittl, Q. A. Prinslow, P. P. Apte, and M. F. Pas, “Kinetics and nucleation model of the C49 to C54 phase transformation in TiSi2 thin films on deep-sub-micron n + type polycrystalline silicon lines”, Appl. Phys. Lett. 67, p. 2308 (1995)
17. K. L. Saenger, J. C. Cabral, Jr., L. A. Clevenger, R. A. Roy, and S. Wind, “A kinetic study of the C49 to C54 TiSi2 conversion using electrical resistivity measurements on single narrow lines”, J. Appl. Phys. 78, p. 7040 (1995)
18. S. L. Zang, C. Lavoie, C. Cabral, J. M. E. Harper, F. M. d’Heurle, and J. J. Sweet, “In situ characterization of titanium silicide formation: the effect of Mo interlayer, temperature ramp-rate, and annealing atmosphere”, J. Appl. Phys. 85, p.2617 (1999)
19. R. W. Mann, G. L. Miles, T. A. Knotts, D. W. Rakowski, L. A. Clevenger, J. M. E. Harper, F. M. d’Heurle, and C. Cabral, “Reduction of the C54-TiSi2 phase-transformation temperature using refractory-metal ion-implantation”, Appl. Phys. Lett. 67, p.3729 (1995)
20. H. Jeon, B. Jung, Y. D. Kim, W. Yang, and R. J. Nemanich, “Effects of a Ta interlayer on the phase transition of TiSi2 on Si(111) ”, J. Appl. Phys. , 88, p.2467 (2000)
21. E. S. Bumps, H. D. Kessler, and M. Hansen, Trans. A. S. M. 45, p.1008 (1953)
22. S. P. Murarka and D. B. Fraser, “Thin film interaction between titanium and polycrystalline silicon”, J. Appl. Phys. 51, p.342 (1980)
23. A. Guldan, V. Schiller, A. Steffen and P. Balk, “Formation and properties of TiSi2 films ”, Thin Solid Films, 100, p.1 (1983)
24. M. Wittmer, “Barrier layer: Principles and applications in microelectronics”, J. Vac. Sci. Technol. A, 2, p. 273 (1984)
25. A. Mak. MRS Conference Proceedings ULSI-VII, p.453 (1992)
26. W. De Bosscher and F. Noury, VMIC Conference, p.493 (1994)
27. Q. Xu and C. M. Hu, “New Ti-salicide process using Sb and Ge preamorphization for sub-0.2μm CMOS technology”, IEEE Trans. Electron Device ED, 45, p.2002-2009 (1998)
28. 莊達人, “VLSI製造技術”,高立圖書公司,p.38,1995年3 月25日初版
29. S. P. Murarka, “Metallization: Theory and practice for VLSI and ULSI”, Butterworth-Heinemann (1993)
30. W. Buckel, J. Vac. Sci. Tech.6, p.606 (1969)
31. C. R. Teller, A. J. Tosser, “Size Effects in Thin Film”, Elsevier, New York, p.251 (1982)
32. H. K. Henisch, Semiconductor Contacts-An Approach to Ideas and Models”, Clarendon Press, Oxford, p.336 (1984)
33. W. D. Nix, Mettal. Trans. A, 20A, p.2217 (1989)
34. Ingrid De Wolf, H. E. Maes, and Stephen K. Jones, “Stress measurements in silicon devices through Raman spectroscopy: Bridging the gap between theory and experiment”, J. Appl. Phys. 79, p.9 (1996)
35. J. T. Pan and I. Blech, J. Appl. Phys. 55, p.2874 (1984)
36. V. L. Teal and S. P. Murarka, J. Appl. Phys. 61, p.5038 (1987)
37. J. F. Jongste, O. B. Loopstra, G. C. A. M. Janssen and S. Radelaar, J. Applied Physics 73, p.2816 (1993)
38. R. W. Hoffman, “Physics of Thin Film: Vol. 3”, Academic, New York (1966)
39. C. J. Tsai, K. H. Yu, “Stress evolution during isochronal annealing of Ni/Si system”, Thin Solid Films 350, p.91 (1999)
40. C. J. Tsai, P. L. Chung and K. H. Yu, “Stress evolution of Ni/Pd/Si reaction system under isochronal annealing”, Thin Solid Film 365, p.72 (2000)
41. B. D. Cullity, “Elements of X-ray Diffraction”, Addison-Wesley Publishing Company, Inc., p.86 (1979)
42. http://mitghmr.spd.louisville.edu/lutz/resources/sops/sop45.html
43. http://www.cea.com/cai/augtheo/caiatheo.htm
44. http://www.matter.org.uk/tem/
45. http://www.unl.edu/CMRAcfem/temoptic.htm
46. http://www.uq.edu.au/nanoworld/tem_gen.html
47. K. L. Saenger, C. Cabral, Jr., L. A. Clevenger, and R. A. Roy, “Investigation of titanium silicide formation in Ti+Si reactions using infrared spectroscopy and X-ray diffraction”, J. Appl. Phys. 77, p. 10 (1995)
48. P.P. buaud, F. M. d’Heurie, S. Chevacharoenkul, and E. A. Irene, “In situ strain measurement during the formation of palladium silicide films”, J. Vac. Sci. Technol. B 11, p.2 (1993)
49. “Properties of metal silicides”, edited by K. Maex, and M. V. rossum p. 284 (1995)