簡易檢索 / 詳目顯示

研究生: 鄭明傑
Ming-Chieh Cheng
論文名稱: 微奈米金屬直接壓印成形之研究 — 分子動力學模擬與實驗
Direct micro/nano metallic imprint formation –A molecular dynamics simulation and experiment
指導教授: 宋震國
Cheng-Kuo Sung
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 135
中文關鍵詞: 奈米壓印分子動力學模擬直接壓印金屬壓印模具齒寬薄膜厚度尺寸效應
外文關鍵詞: Nanoimprint, Molecular dynamics simulation, Direct imprint, Metallic imprint, Mold width, Thin-film thickness, Size effect
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米壓印被視為未來製造奈米結構最有□力的方法之一。本文提出直接壓印製程,為製造奈米結構的另一選擇方法,與奈米壓印不同之處,在於直接壓印所製造的奈米結構為金屬。本文提出三維分子動力學模型模擬奈米壓印之製程,並且研究模具線寬及金屬薄膜厚度對於結構成形的影響,模擬中所採用的材料為鎳模具及金薄膜,排列的晶格結構為單晶面心立方結構。模擬結果顯示,藉著改變金屬薄膜厚度及模具線寬,應力分佈、材料硬度、靜水壓區及基材效應…等均對會壓印製程有所響。除了模擬之外,亦採取實驗來驗證尺寸效應對金屬薄膜壓印的影響。實驗包括奈米壓痕及奈米壓印實驗,前者用於測量金屬薄膜硬度而後者則探討尺寸效應對於結構成形影響。由模擬結果顯示,模具線寬大小及金屬薄膜厚薄對奈米壓印成形的好壞均有顯著的影響;實驗結果也符合模擬之趨勢,顯示尺寸效應在奈米壓印成形機制裡是一個重要的因素。


    Nanoimprinting lithography is considered to be one of the methods with the most potential for the fabrication of nano-structures. This study proposes an alternative manufacturing process, the direct imprint method, which is different from nanoimprinting lithography and which is employed in the fabrication of metallic thin-film nano-structure. A three-dimension molecular dynamics simulation is utilized to simulate the imprinting process. The effects of the thin-film thickness and the line width of the mold on the formation of metallic patterns are also investigated. In the molecular dynamics simulation model, the metallic thin film and the mold, made of gold and nickel, respectively, are formed in face central cubical single crystal. The simulation results show that during the imprinting process, by varying the thickness of thin films and the line width of the mold, the mechanical properties such as hardness and stress will change and have a great effect on the formation of metallic patterns. The substrate effect appears during the imprinting process, and that is an important factor in the manufacturing process. Following the simulation, an experimental investigation is performed as comparison. This includes two experiments, nanoindentation and direct nanoimprinting. The former characterizes the mechanical properties of thin films on the substrate while the latter illustrates the formation of metallic patterns. It has been found that the effects of thin-film thickness on the formation of metallic patterns correspond very well both in simulation and experimental results.

    Abstract Contents Index of Tables Index of Figures Notation Chapter 1 Introduction 1.1 Background 1.2 Literature Review 1.2.1 Nanoimprint Lithography 1.2.2 Metal forming 1.2.3 Molecular Dynamics Simulation 1.3 The content of this research Chapter 2 Molecular Dynamics Simulation 2.1 Theory 2.2 Intermolecular force and potential function 2.2.1 Lennard-Jones (L-J) potential 2.2.2 Morse potential 2.2.3 Potential truncated radius 2.3 Initialization 2.3.1 Initial position 2.3.2 Initial velocity 2.4 Geometry boundary condition 2.4.1 Periodic boundary condition 2.4.2 Minimum-image criterion 2.5 Thermal Control boundary condition 2.5.1 Scaling method 2.5.2 Langevin method 2.6 Numerical scheme 2.6.1 Verlet neighbor lists 2.6.2 Gear’s predictor-corrector algorithm 2.7 Equilibration monitoring 2.7.1 Positional Disorder 2.7.2 Velocity Distribution Chapter 3 Direct Imprint Physcial Model and Formation Mechanism 3.1 Flow chart of simulation 3.2 Physical Model 3.2.1 Configurations and boundary conditions 3.2.2 Parameters of Empirical Morse potential 3.2.3 Dimensionless parameters of potential function 3.2.4 Atomic scale stress 3.2.5 Simulation parameters setup 3.3 Formation Mechanism 3.3.1 Elastic and plastic deformation 3.3.2 Dislocation 3.3.3 Dislocation nucleation 3.3.4 Slip Systems Chapter 4 Direct Imprint Simulation Results 4.1 Behaviors of Direct Imprint Process 4.1.1 Mold descending 4.1.2 Imprinting 4.1.3 Position holding 4.1.4 Mold removing 4.1.5 Formation 4.2 The effect of mold width 4.2.1 Imprinting force 4.2.2 Formation 4.2.3 Substrate effect 4.2.4 Simulation results of different film thickness 4.3 The effect of thin-film thickness 4.3.1 Imprint force 4.3.2 Metallic film hardness 4.3.3 Formation 4.3.4 Substrate effect Chapter 5 Direct imprint experiment 5.1 Experimental procedure 5.2 Apparatus 5.2.1 Fabricating mold and film 5.2.2 Implementing experiment 5.2.3 Measuring structure dimensions 5.3 Experiment parameters 5.3.1 The mold 5.3.2 Thin film Chapter 6 Experimental results and discussions 6.1 Nanoindentation 6.2 Direct imprint 6.2.1 FESEM diagram 6.2.2 AFM diagrams 6.3 Direct imprint results 6.3.1 Grating width 6.3.2 Metallic film thickness Chapter 7 Conclusions and future work 7.1 Conclusions 7.2 Future work 7.2.1 Simulation 7.2.2 Experiment Reference

    1.R. P. Feynman, There's plenty of room at the bottom, Journal of Microelectromechanical Systems, 1992, 1(1), p. 60-66.
    2.M. A. McCord and M. J. Rooks, Handbook of Microlithography, Micromachining and Microfabrication. 1997: SPIE-International Society for Optical Engine
    3.http://www.intel.com/technology/mooreslaw/index.htm accessed on 22nd , Dec. 2005
    4.Y. Xia and G. M. Whitesides, Soft Lithography, Angewandte Chemie International Edition, 1998, 37(5), p. 550-575.
    5.G. Stix, Shrinking Circuits with Water, Science America, 2005, 293(1), p. 54-57.
    6.http://www.itrs.net/Links/2006Update/FinalToPost/08_Lithography2006Update.pdf accessed on 22nd, Dec. 2006
    7.Y. C. Stephen, R. K. Peter and J. R. Preston, Imprint of sub-25 nm vias and trenches in polymers, Applied Physics Letters, 1995, 67(21), p. 3114-3116.
    8.S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo and L. Zhuang, Sub-10 nm imprint lithography and applications, Journal of vacuum Science and Technology B, 1997, 15(6), p. 2897-2904.
    9.J. M. Haile, Molecular Dynamics Simulation: Elementary Methods. 1992: John Wiley & Sons, Inc.
    10.V. V. Pokropivny, V. V. Skorokhod and A. V. Pokropivny, Atomistic mechanism of adhesive wear during friction of atomic-sharp tungsten asperity over (114) bcc-iron surface, Materials Letters, 1997, 31(1-2), p. 49-54.
    11.U. Landman, W. D. Luedtke, N. A. Burnham and R. J. Colton, Atomistic Mechanisms and Dynamics of Adhesion, Nanoindentation, and Fracture, Science, 1990, 248(4954), p. 454.
    12.J. A. Harrison, R. J. Colton, C. T. White and D. W. Brenner, Effect of atomic-scale surface roughness on friction: A molecular dynamics study of diamond surfaces, Wear, 1993, 168(1-2), p. 127-133.
    13.K. Maekawa and A. Itoh, Friction and tool wear in nano-scale machining--a molecular dynamics approach, Wear, 1995, 188(1-2), p. 115-122.
    14.B. Bhushan, Handbook of Micro/Nano Tribology, 2nd ed. 1995: CRC Press.
    15.R. Komanduri, N. Chandrasekaran and L. M. Raff, Molecular dynamics simulation of atomic-scale friction, Physical Review B, 2000, 61(20), p. 14007-14019.
    16.W. C. D. Cheong and L. C. Zhang, Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation, Nanotechnology, 2000, 11(3), p. 173-180.
    17.U. Landman and W. D. Luedtke, Nanomechanics and dynamics of tip-substrate interactions, The Journal of Vacuum Science and Technology B, 1991, 9(2), p. 414.
    18.H. Tan, A. Gilbertson and S. Y. Chou, Roller nanoimprint lithography, Journal of vacuum Science and Technology B, 1998, 16(6), p. 3926-3928.
    19.http://www.molecularimprints.com/Technology/technology2.html accessed on 22nd , Dec. 2005
    20.S. Y. Chou, C. Keimel and J. Gu, Ultrafast and direct imprint of nanostructures in silicon, Nature, 2002, 417(6891), p. 835-837.
    21.J. J. Wang, D. Jiandong, D. Xuegong, L. Feng, P. Sciortino, C. Lei, A. Nikolov and A. Graham, Innovative high-performance nanowire-grid polarizers and integrated isolators, Selected Topics in Quantum Electronics, IEEE Journal of, 2005, 11(1), p. 241-253.
    22.D. C. Flanders and A. E. White, Application of [approximately-equal-to] 100 [A-ring] linewidth structures fabricated by shadowing techniques, Journal of Vacuum Science and Technology, 1981, 19(4), p. 892-896.
    23.S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, S. H. Lee, J.-D. Park and P.-W. Yoon. Fabrication of subwavelength aluminum wire grating using nanoimprint lithography and reactive ion etching. 2005: Elsevier, Amsterdam, 1000 AE, Netherlands.
    24.S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee and P.-W. Yoon, Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography, Nanotechnology, 2005, 16(9), p. 1874-1877.
    25.J. Tao, Y. Chen, X. Zhao, A. Malik and Z. Cui. Room temperature nanoimprint lithography using a bilayer of HSQ/PMMA resist stack. 2005: Elsevier, Amsterdam, 1000 AE, Netherlands.
    26.J. H. Irving and J. G. Kirkwood, The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics, The Journal of Chemical Physics, 1950, 18(6), p. 817-829.
    27.N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics, 1953, 21(6), p. 1087-1092.
    28.B. J. Alder and T. E. Wainwright, Phase Transition for a Hard Sphere System, The Journal of Chemical Physics, 1957, 27(5), p. 1208-1209.
    29.B. J. Alder and T. E. Wainwright, Studies in Molecular Dynamics. I. General Method, The Journal of Chemical Physics, 1959, 31(2), p. 459-466.
    30.L. A. Girifalco and V. G. Weizer, Application of the Morse Potential Function to Cubic Metals, Physical Review, 1959, 114(3), p. 687-690.
    31.A. Rahman, Correlations in the Motion of Atoms in Liquid Argon, Physical Review, 1964, 136(2A), p. A405.
    32.L. Verlet, Computer "Experiments" on Classical Fluids. II. Equilibrium Correlation Functions, Physical Review, 1967, 165(1), p. 201.
    33.B. Quentrec and C. Brot, New method for searching for neighbors in molecular dynamics computations, Journal of Computational Physics, 1973, 13(3), p. 430-432.
    34.D. C. Rapaport, Large-scale Molecular Dynamics Simulation Using Vector and Parallel Computers, Computer physics reports, 1988, 9(1), p. 1.
    35.G. S. Grest, B. Dunweg and K. Kremer, Vectorized link cell Fortran code for molecular dynamics simulations for a large number of particles, Computer Physics Communications, 1989, 55(3), p. 269-285.
    36.J. Shimizu, H. Eda, M. Yoritsune and E. Ohmura, Molecular dynamics simulation of friction on the atomic scale, Nanotechnology, 1998, 9(2), p. 118-123.
    37.T.-H. Fang and C.-I. Weng, Three-dimensional molecular dynamics analysis of processing using a pin tool on the atomic scale, Nanotechnology, 2000, 11(3), p. 148-153.
    38.H. Yu, J. B. Adams and L. G. Hector Jr, Molecular dynamics simulation of high-speed nanoindentation, Modelling and Simulation in Materials Science and Engineering, 2002, 10(3), p. 319-329.
    39.Z. Yu, P. Deshpande, W. Wu, J. Wang and S. Y. Chou, Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography, Applied Physics Letters, 2000, 77(7), p. 927-929.
    40.M. Born and J. R. Oppenheimer, On the Quantum Theory of Molecules, Ann. Phys. (Leipzig). 1927, 84, p. 457.
    41.C. Hoheisel, Effect of three-body forces on the static and dynamic correlation functions of a model liquid, Physical Review A (General Physics), 1981, 23(4), p. 1998-2005.
    42.D. Stauffer, Annual Reviews of Computational Physics IX. 2001: World Scientific.
    43.J. E. Jones, On the Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature, Proceedings of the Royal Society of London. Series A, 1924, 106, p. 441.
    44.J. E. Jones, On the Determination of Molecular Fields. II. From the Equation of State of a Gas, Proceedings of the Royal Society of London. Series A, 1924, 106, p. 463.
    45.F. London, Properties and Applications of Molecular Forces, Zeit. Physik. Chem. B, 1930, 11, p. 222.
    46.M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids. 1987: Oxford.
    47.A. M. Childs, M. H. Shapiro and T. A. Tombrello, Simulation of keV clusters incident on gold targets, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 1998, 143(3), p. 298-305.
    48.L. Verlet, Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Physical Review, 1967, 159(1), p. 98-103.
    49.M. Imafuku, Y. Sasajima, R. Yamamoto and M. Doyama, Computer simulations of the structures of the metallic superlattices Au/Ni and Cu/Ni and their elastic moduli, Journal of Physics F: Metal Physics, 1986, 16(7), p. 823.
    50.S. K. Das, D. Roy and S. Sengupta, Volume change in some substitutional alloys using Morse potential function, Journal of Physics F: Metal Physics, 1977, 7(1), p. 5.
    51.M. Born and H. Huang, Dynamical theory of crystal lattices. 1954: London :Oxford University Press.
    52.H. Goldstein, Classical mechanics, 2nd ed. 1980: Reading, Mass. :Addison-Wesley Pub.
    53.Z. S. Basinski, M. S. Duesbery and R. Taylor, Influence of shear stress on screw dislocations in a model sodium lattice, Canadian Journal of Physics, 1971, 49, p. 2160.
    54.J. F. Lutsko, Stress and elastic constants in anisotropic solids: Molecular dynamics techniques, Journal of Applied Physics, 1988, 64(3), p. 1152-1154.
    55.S. Shen and S. N. Atluri, Atomic-level stress calculation and continuum-molecular system equivalence, Computer Modeling in Engineering & Science, 2004, 6(1), p. 91.
    56.M. D. Kluge, D. Wolf, J. F. Lutsko and S. R. Phillpot, Formalism for the calculation of local elastic constants at grain boundaries by means of atomistic simulation, Journal of Applied Physics, 1990, 67(5), p. 2370-2379.
    57.D. Dowson, History of tribology, 2nd ed. 1998: Professional Engineering Publishing.
    58.R. C. Hibbeler, Mechanis of Materials, 4th ed. 2000: Prentice Hall International, Inc.
    59.J. William D. Callister, Materials Science and Engineering an Introduction, 6th ed. 2003: Wiley International.
    60.R. E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles 3rd ed. 1991: Thomson-Engineering.
    61.J. J. Gilman, Dislocation Sources in Crystals, Journal of Applied Physics, 1959, 30(10), p. 1584-1594.
    62.F. C. Frank and W. T. Read, Multiplication Processes for Slow Moving Dislocations, Physical Review, 1950, 79(4), p. 722.
    63.J. C. Fisher, Dislocations and mechanical properties of crystals. 1957: New York :John Wiley.
    64.S. Suresh, Crystal deformation: Colliod model for atoms, Nature Materials, 2006, 5(4), p. 253-254.
    65.W. Gerbrerich and W. Mook, A new picture of plasticity, Nature materials, 2005, 4(8), p. 577-578.
    66.J. Li, K. J. V. Vilet, T. Zhu, S. Yip and S. Suresh, Atomistic mechanisms governing elastic limit and incipient plasticity in crystals, Nature, 2002, 418(18), p. 307-310.
    67.M.-C. Cheng, Y.-l. Hsueh, H.-Y. Chen and C.-K. Sung, Length Effect on Formation of Metallic Patterns by Nanoimprinting Process – Molecular Dynamics Simulation Material Science Forum, 2006, 505, p. 133-138.
    68.M.-C. Cheng, Y.-L. Hsueh, H.-Y. Chen and C.-K. Sung, The effect of thin-film thickness on the formation of metallic patterns by direct nanoimprint process, Journal of Material Processing Technology, 2006, Accepted.
    69.C. Tromas, J. C. Girard, V. Audurier and J. Woirgard, Study of the low stress plasticity in single-crystal MgO by nanoindentation and atomic force microscopy, Journal of Materials Science, 1999, 34(21), p. 5337-5342.
    70.S. Suresh, T. G. Nieh and B. W. Choi, Nano-indentation of copper thin films on silicon substrates, Scripta Materialia, 1999, 41(9), p. 951-957.
    71.Y. Choi, K. J. Van Vliet, J. Li and S. Suresh, Size effects on the onset of plastic deformation during nanoindentation of thin films and patterned lines, Journal of Applied Physics, 2003, 94(9), p. 6050-6058.
    72.D. E. Kramer, A. A. Volinsky, N. R. Moody and W. W. Gerberich, Substrate effects on indentation plastic zone development in thin soft films, Journal of Materials Research, 2001, 16(11), p. 3150-3157.
    73.N. Tayebi, A. A. Polycarpou and T. F. Conry. Effects of the Substrate on the Determination of Hardness of Thin Films by the Nanoscratch and Nanoindentation Techniques: A Comparative Study for the Cases of Soft Film on Hard Substrate and Hard Film on Soft Substrate. in Materials research society symposium proceeding. 2003: Materials Research Society.
    74.A. R. F. Jr., G. Pinta□deII, A. SinatoraI, C. E. PinedoIII and A. P. Tschiptschin, The use of a vickers indenter in depth sensing indentation for measuring elastic modulus and vickers hardness, Material Research, 2004, 7(3), p. 483-491.
    75.W. C. Oliver and G. M. Pharr, An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments, Journal of Materials Research, 1992, 7(6), p. 1564-1583.
    76.S. Chen, L. Liu and T. Wang, Investigation of the mechanical properties of thin films by nanoindentation, considering the effects of thickness and different coating-substrate combinations, Surface and Coatings Technology, 2005, 191(1), p. 25-32.
    77.H. D. Espinosa, B. C. Prorok and B. Peng, Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension, Journal of the Mechanics and Physics of Solids, 2004, 52(3), p. 667-689.
    78.R. Saha, Z. Xue, Y. Huang and W. D. Nix, Indentation of a soft metal film on a hard substrate: Strain gradient hardening effects, Journal of the Mechanics and Physics of Solids, 2001, 49(9), p. 1997-2014.
    79.D. L. Joslin and W. C. Oliver, A New Method for Analyzing Data from Continuous Depth-Sensing Microindentation Tests, Journal of Materials Research, 1990, 5(1), p. 123-126.
    80.http://www.tf.uni-kiel.de/matwis/amat/def_en/kap_7/advanced/t7_2_2.html accessd on 3rd, Dec. 2006
    81.http://www.nanolab.itri.org.tw/lab/EquSingledetail.aspx?nano_equno=81077400021 accessed on 3rd. Dec. 2006
    82.http://ustcnst.nthu.edu.tw/nodust_equip.php?act=DCSputterSystem accessed on 3rd Dec. 2006
    83.http://www.hysitron.com/Products/ProductPages/products_triboindenter.htm accessed on 22nd , Dec. 2005
    84.http://www.mirl.itri.org.tw/mirl-inter/coretech/core_c/c01b.asp accessed on 3rd, Dec. 2006
    85.http://rdweb.adm.nctu.edu.tw/page.php?serial=217 accessed on 3rd, Dec. 2006

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE