簡易檢索 / 詳目顯示

研究生: 魏仲廷
Wei Chung-ting
論文名稱: 錫/銅薄膜介面反應之動力學研究
A Kinetic Study of Sn/Cu Bimetallic Thin Film Reaction
指導教授: 廖建能
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 75
中文關鍵詞: 覆晶薄膜電阻球下金屬層掃描式電子顯微鏡四點探針法介金屬化合物
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 覆晶(Flip-Chip)技術由於具有封裝密度、功能、及成本之優勢,漸成為微電子構裝技術之主流。在覆晶結構中銲球與球下金屬層(Under Ball Metallurgy,簡稱UBM)之可靠度(Reliability)問題則居此技術之關鍵地位。本實驗擬針對無鉛銲料中最主要之錫成分與銅膜之界面反應做一系統性探討。主要研究主題為錫/銅金屬薄膜界面反應對薄膜電阻之影響與介金屬化合物成長動力機制探討。
    本實驗藉由濺鍍方式將銅膜沉積在氧化矽基板上,再用熱蒸鍍法於銅薄膜上鍍上錫膜,利用四點探針法於氮氣氣氛下以固定升溫速率由室溫升溫至220oC來觀測薄膜電阻變化,並以掃描式電子顯微鏡(SEM),X光結晶繞射法(XRD)及歐杰電子能譜分析儀(AES)分析薄膜介面微結構與介金屬生成相,探討介金屬化合物之生成動力機制。研究結果指出錫-銅介金屬層(IMC)生成活化能約為0.97±0.07eV。銅膜與錫膜的相對厚度亦會對介金屬相的生成順序造成影響,在等速率升溫退火過程所生成的介金屬化合物種類會因膜厚比例不同而有所差異。而且較薄的錫/銅薄膜反應偶由於具較大之電阻變化因而對於薄膜反應生介金屬成相的偵測有較高的靈敏度。


    Flip-Chip technology is becoming a mainstream process due to the advantages of packaging density, functionality and cost. The reliability of solder ball and Under Ball Metallurgy(UBM) remains the critical issue for flip-chip structures. A systematic study of interfacial reaction between Sn, a major constituent of lead free solder, and Cu metallization was conducted. We investigated the interfacial reaction of Sn/Cu bimetallic thin film and the kinetics of Cu-Sn intermetallic compounds (IMC) formation by measuring the resistance change of the Cu/Sn bilayer thin films.
    Sn/Cu bilayer thin films were prepared by consecutive deposition of Cu film and Sn film onto oxidized Si substrates by sputtering and evaporation methods. Resistances of the Cu-Sn bimetallic thin film specimens were measured using an in-situ 4-point probe method when the specimens were heated from room temperature to 220□C at a fixed ramp rate in nitrogen ambient. The various Cu-Sn compounds were identified by X-ray diffraction (XRD), and the morphology of the Cu-Sn compounds was examined by scanning electron microscopy (SEM). The concertration depth profile of the Sn/Cu bimetallic samples were measured by Auger electron spectroscopy (AES). The activation energy of formation of Cu6Sn5 compounds was found to be 0.97±0.07 eV according to the in-situ resistivity measurement. The thickness of the Sn/Cu bilayer thin films was found to affect the sequence of IMC formation. Besides, the thinner reaction couples showed a better resolution for detecting interfacial reaction due to large change in thin film resistance.

    摘 要2 英文摘要3 目 錄5 圖 目錄7 表 目錄10 第 一 章 緒論11 1.1 研究背景11 1.1.1微電子構裝四層次13 1.1.2 BGA封裝16 1.1.3 UBM金屬層反應19 1.2 研究目的21 第 二 章 文獻回顧與實驗規劃23 2.1 Sn-Cu二元相圖23 2.2 Sn/Cu薄膜介面反應24 2.2.1 Sn/Cu液固反應24 2.2.2 Sn/Cu固態反應26 2.3臨場電阻量測與薄膜介面反應研究27 2.3.1 Van der Pauw 四點探針法27 2.3.2 Sn/Cu薄膜反應偶電阻特性模擬27 2.4薄膜反應動力機制33 2.4.1 擴散控制機制33 2.4.2 反應控制機制33 2.5 實驗規劃34 2.5.1試片製備34 2.5.2臨場電阻量測系統36 2.5.3實驗步驟38 第三章 結果與討論39 3.1 Sn(2µm)/Cu(0.6µm)厚膜試片39 3.2 錫/銅薄膜厚度對介金屬相生成之影響44 3.2.1 Sn(0.19µm)/Cu(0.2µm)試片電阻溫度變化特性44 3.2.2 Sn(0.4 or 0.6µm)/Cu(0.2µm)試片電阻溫度變化特性51 3.2.3 Cu6Sn5生成活化能計算60 3.2.4錫/銅薄膜厚度對薄膜電阻變化特性之影響61 3.2.5歐杰電子能譜儀縱深分析63 第四章 結論69 第五章 參考文獻71 圖1-1電子構裝的功能14 圖1-2電子構裝層級示意圖15 圖1-3第一層次電子構裝的各種接合方法15 圖1-4電子構裝演進圖17 圖1-5以打金線(Gold-Wire Bonding)方式連接晶片的BGA 封裝18 圖1-6以覆晶(Flip-Chip)方式連接晶片的BGA 封裝18 圖1-7基板、銅墊層與銲錫球相對位置圖。20 圖1-8介金屬層厚度與抗拉強度的關係20 圖2-1 錫-銅二元相圖23 圖2-2 介金屬相ripening反應通量示意圖25 圖2-3 Van der Pauw四點探針法27 圖2-4 第一階段錫銅反應偶側視圖與其等效並聯電路圖28 圖2-5 錫/銅反應偶之第一階段電阻隨時間變化關係圖29 圖2-6 第二階段錫銅反應偶側視圖與其等效並聯電路圖31 圖2-7 錫/銅反應偶之第二階段電阻隨時間變化關係圖32 圖2-8 錫銅薄膜反應偶結構示意圖34 圖2-9 α-step平均厚度量測35 圖2 -10 可程式溫控高溫爐、尾蓋與載具台37 圖2-11 臨場電阻量測系統示意圖37 圖3-1 Sn(2µm)/Cu(0.6µm)試片在不同升溫速率下電阻隨溫度變化圖40 圖3-2 Sn(2µm)/Cu(0.6µm)經過1oC/min升溫速率升溫至220oC與未退火試片之XRD結果比較41 圖3-3 未退火Sn(2µm)/Cu(0.6µm)試片之SEM觀測43 圖3-4 Sn(2µm)/Cu(0.6µm) 試片經2oC/min升溫至220oC後之SEM觀測43 圖3-5 Sn(0.19µm)/Cu(0.2µm)試片在不同升溫速率下電阻隨溫度變化圖45 圖3-6 Sn(0.19µm)/Cu(0.2µm)未退火試片與以2oC/min昇溫分別於113oC、128oC、184oC及206oC取出試片的X光繞射結果47 圖3-7 Sn(0.19µm)/Cu(0.2µm)試片經不同升溫速率(1oC/min、2oC/min及5oC/min)升溫至215oC的X光繞射結果48 圖3-8 未退火Sn(0.19µm)/Cu(0.2µm)試片之SEM-BEI觀測50 圖3-9 Sn(0.19µm)/Cu(0.2µm)試片以5oC/min升溫過程中分別於107oC,141oC,188oC及215oC下取出後之SEM-BEI觀測50 圖3-10 Sn(0.6µm)/Cu(0.2µm)試片在不同升溫速率下電阻隨溫度變化圖52 圖3-11 Sn(0.4µm)/Cu(0.2µm)試片在不同升溫速率下電阻隨溫度變化圖53 圖3-12 Sn(0.6µm)/Cu(0.2µm)試片經不同升溫速率升溫至200oC 後之X光繞射結果55 圖3-13 Sn(0.4µm)/Cu(0.2µm)試片經不同升溫速率升溫至200oC 後之X光繞射結果56 圖3-14 Sn(0.6µm)/Cu(0.2µm)未退火試片與以0.5oC/min昇溫分別於125oC、157oC、172oC及206oC取出試片的X光繞射結果57 圖3-15 未退火Sn(0.4µm)/Cu(0.2µm)試片之SEM-BEI影像圖58 圖3-16 Sn(0.4µm)/Cu(0.2µm) 試片經1oC/min昇溫至220oC後之SEM-BEI影像圖59 圖3-17 Sn(0.6µm)/Cu(0.2µm)試片在常溫下保持約3個月之 SEM影像圖59 圖3-18錫/銅介金屬化合物生成活化能比較圖60 圖3-19未退火Sn(0.19µm)/Cu(0.2µm) 試片之歐杰電子縱深分析圖65 圖3-20 Sn(0.19µm)/Cu(0.2µm)試片經2oC/min升溫至120oC歐杰電子縱深分析圖66 圖3-21 Sn(0.19µm)/Cu(0.2µm)試片經2oC/min升溫至175oC歐杰電子縱深分析圖67 圖3-22 Sn(0.19µm)/Cu(0.2µm)試片經2oC/min升溫至220oC歐杰電子縱深分析圖68 表2-1 Sn-Cu二元相圖中平衡相之晶體結構與成份24 表2-2 Cu/Sn/Cu6Sn5之比重、原子量與原子密度比28 表2-3 Cu/Cu3Sn/Cu6Sn5之比重、原子量與原子密度比31

    [1]張俊彥,鄭晃忠,”積體電路製程及設備技術手冊”,中華民國電子材料與元件協會等出版 (1998)。
    [2]M. L. Minges et al., “Packaging”, Electronic Materials Handbook, Vol. 1, ASM International, Materials Park, Ohio (1989).
    [3]D. P. Seraphim, R. C. Lasky and C-Y. Li, “Principle of Electronic Package”,McGraw-Hill, New York (1993).
    [4]R. R. Tummala, E. J. Rymaszewski and A. G. Klopfenstein, “Microelectronics Packaging Handbook”, Chapman, New York (1997).
    [5]呂宗興,“電子構裝技術的發展歷程”,工業材料115 期 (1996)。
    [6]孔令臣,“覆晶凸塊技術”,工業材料,(1998)。
    [7]R. J. Wassink, “Soldering in Eelectronics”, Electrochemical Pub. Ltd. (1984).
    [8]李明勳碩士論文,“鎳與鉍相平衡及界面反應之研究在微電子用無鉛銲料的應用”,國立中央大學化工所 (1998)。
    [9]E. Rideout, 1994 IEEE/CPMT Int. Elect. Manufact. Tech. Symp. (1994).
    [10]A. Rahn, “The Basics of Soldering”, John Wiely & Sons, New York (1993).
    [11]C. E. Ho, Y. M. Chen, and C. R. Kao, “Reaction kinetics of solder-balls with pads in BGA during reflow soldering” , J. Electron. Mater., 28 (1999).
    [12]S. K. Kang and V. Ramachandran, Scripta Metall., 14, p421 (1980).
    [13] C. R. Kao, “Microstructures developed in solid-liquid reactions: using Cu-Sn reaction, Ni-Bi reaction, and Cu-In reaction as examples” , Materials Science & Engineering, A238 (1997).
    [14]M. S. Lee, C. M. Liu and C. R. Kao, “Interfacial reactions between Ni substrate and the component Bi in solders ” ,J. Electron. Mater., 28 (1999).
    [15]S. K. Kang, R. S. Rai and S. Purushothaman, “Interfacial Reactions During Soldering with Lead-Tin Eutectic and Lead (Pb)-Free, Tin-Rich Solders ” , J. Electron. Mater., 25 (1996).
    [16]F. Stepniak, “Conversion of the under bump metallurgy into intermetallics: the impact on flip chip reliability”, Microelectronics Reliability, 41 (2001).
    [17]C. Y. Liu, Chih Chen, K. Mal, and K. N. Tu, “Direct correlation of mechanical failure and metallurgical reaction in flip chip solder joints”, J. Appl. Phys. 85 (1999).
    [18]C. Y. Liu, K. H. Kim, K. N. Tu, and P. A. Totta, “Dewetting of molten Sn on Au/Cu/Cr thin film metallization”, Appl. Phys. Lett., 69 (1996).
    [19]J. H. Lee, J. H. Park, D. H. Shin, Y. H. Lee, T. S. Kim, “Kinetics of Au-containing ternary intermetallic redeposition at solder/UBM interface”, J. Electron. Mater. 30 (2001).
    [20]W. W. So, S. Choe, R. Chuang, C. C. Lee, “An effective diffusion barrier metallization process on copper”, Thin Solid Films, 376 (2000).
    [21]C. Y. Lee and K. L. Lin, “Ni-Cu-P and Ni-Co-P As a diffusion barrier between an Al pad and a solder bump”, Thin Solid Films, 239 (1994).
    [22]D. R. Frear, S. N. Burchett, H. S. Morgan, and J. H. Lau, eds., “The Mechanics of Solder Alloy Interconnects”, Van Nostrand Reinhold, New York (1994).
    [23]K. N. Tu, K. P. Rodbell, W. A. Lanford, X. S. Go, “Fine-line interactions in Al/Hf/Al thin films”, Physical Review B ,43 (1991).
    [24]K. N. Tu, R. D. Thompson, “Kinetics of Interfacial reaction in bimetallic Cu-Sn thin films”, Acta Metall, 30 (1982).
    [25]K. N. Tu, “Interdiffusion and Reaction in Bimetallic Cu-Sn Thin Films”, Acta Metall., 21 (1973).
    [26]K. N. Tu, “Cu/Sn Interfacial Reactions: Thin-Film Case Versus Bulk Case”, Mat. Chem. and Phys., 46 (1996).
    [27]N. Saunders and A. P. Miodownik, “ASE Handbook Vol.3 Alloy PhaseDiagrams”, ed. by H. Baker, ASE International, Materials Park, Ohio (1992).
    [28]N. Saunders and A. P. Miodownik, “Binary Alloy Phase Diagrams”, ed.by Thaddeus B. Massalski, ASE International, Materials Park, Ohio, Vol.2 (1990).
    [29]E. Bradley, K. Snowdon and R. Gedney, “Lead-Free Update”, CircuitsAssembly, Dec. (1999).
    [30]H. K. Kim and K. N. Tu, “Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening”, Physical Review B, P.16027, vol.53 (1996).
    [31]Y. C. Chan, Alex C. K. So, J. K. L. Lai, “Growth kinetic studies of Cu-Sn intermetallic compound and its effect on shear strength of LCCC SMT solder joints”, Material Science and Engineering, B55 (1998).
    [32]E. A. Brandes, “Smithells Metals Reference Book”, 6thed
    [33]C. R. Kao, “Microstructures developed in solid-liquid reactions: using Cu-Sn reaction, Ni-Sn reaction, and Cu-In reaction as examples”, Material Science and Engineering, A238 (1997).
    [34]D. R. Flanders, E. G. Jacobs, and R. F. Pinizzotto, “Activation Energies of Intermetallic Growth of Sn-Ag Eutectic Solder on Copper Substrates”, J. Electron. Mater. 26 (1997).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE