研究生: |
杜信誼 |
---|---|
論文名稱: |
胃幽門螺旋菌的膽固醇醣化轉移酵素影響寄主細胞之吞噬作用 |
指導教授: | 王雯靜 |
口試委員: |
張晃猷
王慧菁 賴志河 陳建華 |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 75 |
中文關鍵詞: | 胃幽門螺旋菌 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
胃幽門螺旋菌(Helicobacter pylori)是一種具鞭毛、微量需氧的革蘭氏陰性菌。在現今世界人口中約有一半的人遭受胃幽門螺旋菌的感染,並導致胃炎、胃潰瘍、十二指腸潰瘍、胃腺癌和胃癌等疾病。此菌寄生於胃上皮細胞,感染此菌所引起的胃部慢性發炎亦造成吞噬細胞於胃黏膜處的積聚。已知當胃幽門螺旋菌接觸到胃上皮細胞時,會將細胞膜上的膽固醇抽出並藉由capJ基因轉譯的膽固醇糖化轉移酵素(cholesterol--glucosyltransferase)形成醣化膽固醇(cholesteryl glucosides)以逃避寄主細胞的免疫反應。我們先前的研究中證明在被胃幽門螺旋菌感染的胃上皮細胞中,醣化膽固醇會影響寄主細胞膜的架構和第四型分泌系統(type IV secretion system)管柱的形成。在本研究中,我們用老鼠的巨噬細胞J774A.1探討胃幽門螺旋菌之醣化膽固醇對寄主細胞吞噬能力的影響。首先我們發現capJ基因剔除菌株(ΔcapJ H. pylori)在巨噬細胞內的存活率明顯的較野生型菌株(wild-type H. pylori)低。藉由活細胞影像共軛焦顯微鏡的拍攝和分析,顯示出與capJ基因剔除菌株相比,野生型菌株能延遲被巨噬細胞吞噬的時間;而剔除後又補回capJ基因的菌株(ΔcapJ-in H. pylori)則顯示出與野生型菌株相近似的平均被吞噬時間。同時,我們使用一種可偵測細胞內酸化胞器的LysoTracker Red染劑來追蹤進入溶小體(lysosome)的細菌,發現在相同的感染時間裡野生型菌株被送入溶小體的數量明顯的少於capJ基因剔除菌株。由以上的結果可推知胃幽門螺旋菌的CapJ蛋白具有延緩細菌被吞噬和延遲噬小體(phagosome)與溶小體融合的功能,因而使得細菌在吞噬細胞中的存活率增加。此外,藉由共軛焦顯微鏡的拍攝偵測初級內體(early endosome)和次級內體(late endosome)的標記物,我們發現在相同的感染時間裡野生型菌株被送入初級內體的數量高於capJ基因剔除菌株;但被送入次級內體的數量卻低於capJ基因剔除菌株。這個結果指出野生型菌株具有停滯吞噬小體運送(phagosome trafficking)並進而延緩噬小體與溶小體融合(phagolysosome)的功能。最後,經由預先對吞噬細胞處理不同的抑制物而後計數細胞內活菌數的實驗顯示野生型菌株而非capJ基因剔除菌株是透過脂質筏和PI3K相關的機制被送入吞噬細胞。本篇研究對於如何使巨噬細胞有效的吞噬胃幽門螺旋菌提供了一個新的視野,未來預期可將此新發現應用於治療胃幽門螺旋菌的感染。
Aderem, A., and Underhill, D.M. (1999). Mechanisms of phagocytosis in macrophages. Annual Review of Immunology 17, 593-623.
Akopyants, N.S., Clifton, S.W., Kersulyte, D., Crabtree, J.E., Youree, B.E., Reece, C.A., Bukanov, N.O., Drazek, E.S., Roe, B.A., and Berg, D.E. (1998). Analyses of the cag pathogenicity island of Helicobacter pylori. Molecular Microbiology 28, 37-53.
Allen, L.A. (2007). Phagocytosis and persistence of Helicobacter pylori. Cellular Microbiology 9, 817-828.
Allen, L.A., and Allgood, J.A. (2002). Atypical protein kinase C-zeta is essential for delayed phagocytosis of Helicobacter pylori. Current Biology : CB 12, 1762-1766.
Allen, L.A., Allgood, J.A., Han, X., and Wittine, L.M. (2005). Phosphoinositide3-kinase regulates actin polymerization during delayed phagocytosis of Helicobacter pylori. Journal of Leukocyte Biology 78, 220-230.
Allen, L.A., Schlesinger, L.S., and Kang, B. (2000). Virulent strains of Helicobacter pylori demonstrate delayed phagocytosis and stimulate homotypic phagosome fusion in macrophages. The Journal of Experimental Medicine 191, 115-128.
Backert, S., Clyne, M., and Tegtmeyer, N. (2011). Molecular mechanisms of gastric epithelial cell adhesion and injection of CagA by Helicobacter pylori. Cell Communication and Signaling : CCS 9, 28.
Backert, S., Ziska, E., Brinkmann, V., Zimny-Arndt, U., Fauconnier, A., Jungblut, P.R., Naumann, M., and Meyer, T.F. (2000). Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. Cellular Microbiology 2, 155-164.
Ben-Menachem, G., Kubler-Kielb, J., Coxon, B., Yergey, A., and Schneerson, R. (2003). A newly discovered cholesteryl galactoside from Borrelia burgdorferi. Proceedings of the National Academy of Sciences of the United States of America 100, 7913-7918.
Blaser, M.J. (1993). Helicobacter pylori: microbiology of a 'slow' bacterial infection. Trends in Microbiology 1, 255-260.
Blaser, M.J., and Parsonnet, J. (1994). Parasitism by the "slow" bacterium Helicobacter pylori leads to altered gastric homeostasis and neoplasia. The Journal of Clinical Investigation 94, 4-8.
Borlace, G.N., Jones, H.F., Keep, S.J., Butler, R.N., and Brooks, D.A. (2011). Helicobacter pylori phagosome maturation in primary human macrophages. Gut Pathogens 3, 3.
Brandt, S., Kwok, T., Hartig, R., Konig, W., and Backert, S. (2005). NF-kappaB activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein. Proceedings of the National Academy of Sciences of the United States of America 102, 9300-9305.
Bruggemann, H., Cazalet, C., and Buchrieser, C. (2006). Adaptation of Legionella pneumophila to the host environment: role of protein secretion, effectors and eukaryotic-like proteins. Current Opinion in Microbiology 9, 86-94.
Censini, S., Lange, C., Xiang, Z., Crabtree, J.E., Ghiara, P., Borodovsky, M., Rappuoli, R., and Covacci, A. (1996). cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proceedings of the National Academy of Sciences of the United States of America 93, 14648-14653.
Clemens, D.L., Lee, B.Y., and Horwitz, M.A. (2000). Deviant expression of Rab5 on phagosomes containing the intracellular pathogens Mycobacterium tuberculosis and Legionella pneumophila is associated with altered phagosomal fate. Infection and Immunity 68, 2671-2684.
Correa, P. (1988). A human model of gastric carcinogenesis. Cancer Research 48, 3554-3560.
Covacci, A., Censini, S., Bugnoli, M., Petracca, R., Burroni, D., Macchia, G., Massone, A., Papini, E., Xiang, Z., Figura, N., et al. (1993). Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proceedings of the National Academy of Sciences of the United States of America 90, 5791-5795.
Covacci, A., Telford, J.L., Del Giudice, G., Parsonnet, J., and Rappuoli, R. (1999). Helicobacter pylori virulence and genetic geography. Science 284, 1328-1333.
Cover, T.L. (1996). The vacuolating cytotoxin of Helicobacter pylori. Molecular Microbiology 20, 241-246.
Czinn, S.J., and Nedrud, J.G. (1997). Immunopathology of Helicobacter pylori infection and disease. Springer Seminars in Immunopathology 18, 495-513.
Danesh, J. (1999). Helicobacter pylori infection and gastric cancer: systematic review of the epidemiological studies. Alimentary Pharmacology & Therapeutics 13, 851-856.
Dunn, B.E., Cohen, H., and Blaser, M.J. (1997). Helicobacter pylori. Clin Microbiol Rev 10, 720-741.
Ernst, P.B., and Gold, B.D. (2000). The disease spectrum of Helicobacter pylori: the immunopathogenesis of gastroduodenal ulcer and gastric cancer. Annu Rev Microbiol 54, 615-640.
Ernst, P.B., Peura, D.A., and Crowe, S.E. (2006). The translation of Helicobacter pylori basic research to patient care. Gastroenterology 130, 188-206; quiz 212-183.
Fujioka, T., Honda, S., and Tokieda, M. (2000). Helicobacter pylori infection and gastric carcinoma in animal models. J Gastroenterol Hepatol 15 Suppl, D55-59.
Goodwin, C.S., and Armstrong, J.A. (1990). Microbiological aspects of Helicobacter pylori (Campylobacter pylori). European journal of clinical microbiology & infectious diseases : Official Publication of the European Society of Clinical Microbiology 9, 1-13.
Gupta, V.R., Patel, H.K., Kostolansky, S.S., Ballivian, R.A., Eichberg, J., and Blanke, S.R. (2008). Sphingomyelin functions as a novel receptor for Helicobacter pylori VacA. PLoS Pathogens 4, e1000073.
Haque, M., Hirai, Y., Yokota, K., and Oguma, K. (1995). Lipid profiles of Helicobacter pylori and Helicobacter mustelae grown in serum-supplemented and serum-free media. Acta medica Okayama 49, 205-211.
Hatakeyama, M. (2009). Helicobacter pylori and gastric carcinogenesis. J Gastroenterol 44, 239-248.
Higashi, H., Tsutsumi, R., Muto, S., Sugiyama, T., Azuma, T., Asaka, M., and Hatakeyama, M. (2002). SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295, 683-686.
Higashi, H., Yokoyama, K., Fujii, Y., Ren, S., Yuasa, H., Saadat, I., Murata-Kamiya, N., Azuma, T., and Hatakeyama, M. (2005). EPIYA motif is a membrane-targeting signal of Helicobacter pylori virulence factor CagA in mammalian cells. The Journal of Biological Chemistry 280, 23130-23137.
Hirai, Y., Haque, M., Yoshida, T., Yokota, K., Yasuda, T., and Oguma, K. (1995). Unique cholesteryl glucosides in Helicobacter pylori: composition and structural analysis. Journal of Bacteriology 177, 5327-5333.
Hirata, Y., Ohmae, T., Shibata, W., Maeda, S., Ogura, K., Yoshida, H., Kawabe, T., and Omata, M. (2006). MyD88 and TNF receptor-associated factor 6 are critical signal transducers in Helicobacter pylori-infected human epithelial cells. Journal of Immunology 176, 3796-3803.
Huang, J.Q., Sridhar, S., Chen, Y., and Hunt, R.H. (1998). Meta-analysis of the relationship between Helicobacter pylori seropositivity and gastric cancer. Gastroenterology 114, 1169-1179.
Joshi, A.D., Sturgill-Koszycki, S., and Swanson, M.S. (2001). Evidence that Dot-dependent and -independent factors isolate the Legionella pneumophila phagosome from the endocytic network in mouse macrophages. Cellular Microbiology 3, 99-114.
Kawakubo, M., Ito, Y., Okimura, Y., Kobayashi, M., Sakura, K., Kasama, S., Fukuda, M.N., Fukuda, M., Katsuyama, T., and Nakayama, J. (2004). Natural antibiotic function of a human gastric mucin against Helicobacter pylori infection. Science 305, 1003-1006.
Kuo, C.H., and Wang, W.C. (2003). Binding and internalization of Helicobacter pylori VacA via cellular lipid rafts in epithelial cells. Biochemical and Biophysical Research Communications 303, 640-644.
Kwok, T., Zabler, D., Urman, S., Rohde, M., Hartig, R., Wessler, S., Misselwitz, R., Berger, J., Sewald, N., Konig, W., et al. (2007). Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 449, 862-866.
Lai, C.-H., Hsu, Y.-M., Wang, H.-J., and Wang, W.-C. (2013). Manipulation of host cholesterol by Helicobacter pylori for their beneficial ecological niche. BioMedicine 3, 27-33.
Lai, C.H., Chang, Y.C., Du, S.Y., Wang, H.J., Kuo, C.H., Fang, S.H., Fu, H.W., Lin, H.H., Chiang, A.S., and Wang, W.C. (2008). Cholesterol depletion reduces Helicobacter pylori CagA translocation and CagA-induced responses in AGS cells. Infection and Immunity 76, 3293-3303.
Lai, C.H., Wang, H.J., Chang, Y.C., Hsieh, W.C., Lin, H.J., Tang, C.H., Sheu, J.J., Lin, C.J., Yang, M.S., Tseng, S.F., et al. (2011). Helicobacter pylori CagA-mediated IL-8 induction in gastric epithelial cells is cholesterol-dependent and requires the C-terminal tyrosine phosphorylation-containing domain. FEMS Microbiology Letters 323, 155-163.
Leunk, R.D., Johnson, P.T., David, B.C., Kraft, W.G., and Morgan, D.R. (1988). Cytotoxic activity in broth-culture filtrates of Campylobacter pylori. Journal of Medical Microbiology 26, 93-99.
Marchetti, M., Arico, B., Burroni, D., Figura, N., Rappuoli, R., and Ghiara, P. (1995). Development of a mouse model of Helicobacter pylori infection that mimics human disease. Science 267, 1655-1658.
Marshall, B. (2002). Helicobacter pylori: 20 years on. Clinical Medicine 2, 147-152.
Marshall, B.J., and Warren, J.R. (1984). Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1, 1311-1315.
Massari, P., Manetti, R., Burroni, D., Nuti, S., Norais, N., Rappuoli, R., and Telford, J.L. (1998). Binding of the Helicobacter pylori vacuolating cytotoxin to target cells. Infection and Immunity 66, 3981-3984.
Mayberry, W.R., and Smith, P.F. (1983). Structures and properties of acyl diglucosylcholesterol and galactofuranosyl diacylglycerol from Acholeplasma axanthum. Biochimica et Biophysica Acta 752, 434-443.
Moese, S., Selbach, M., Zimny-Arndt, U., Jungblut, P.R., Meyer, T.F., and Backert, S. (2001). Identification of a tyrosine-phosphorylated 35 kDa carboxy-terminal fragment (p35CagA) of the Helicobacter pylori CagA protein in phagocytic cells: processing or breakage? Proteomics 1, 618-629.
Montecucco, C., and Rappuoli, R. (2001). Living dangerously: how Helicobacter pylori survives in the human stomach. Nat Rev Mol Cell Biol 2, 457-466.
Nakayama, M., Hisatsune, J., Yamasaki, E., Nishi, Y., Wada, A., Kurazono, H., Sap, J., Yahiro, K., Moss, J., and Hirayama, T. (2006). Clustering of Helicobacter pylori VacA in lipid rafts, mediated by its receptor, receptor-like protein tyrosine phosphatase beta, is required for intoxication in AZ-521 Cells. Infection and Immunity 74, 6571-6580.
Nguyen, V.Q., Caprioli, R.M., and Cover, T.L. (2001). Carboxy-terminal proteolytic processing of Helicobacter pylori vacuolating toxin. Infection and Immunity 69, 543-546.
Odenbreit, S., Puls, J., Sedlmaier, B., Gerland, E., Fischer, W., and Haas, R. (2000). Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287, 1497-1500.
Papini, E., Zoratti, M., and Cover, T.L. (2001). In search of the Helicobacter pylori VacA mechanism of action. Toxicon : Official Journal of the International Society on Toxinology 39, 1757-1767.
Parsonnet, J. (1998). Helicobacter pylori. Infectious Disease Clinics of North America 12, 185-197.
Patel, H.K., Willhite, D.C., Patel, R.M., Ye, D., Williams, C.L., Torres, E.M., Marty, K.B., MacDonald, R.A., and Blanke, S.R. (2002). Plasma membrane cholesterol modulates cellular vacuolation induced by the Helicobacter pylori vacuolating cytotoxin. Infection and Immunity 70, 4112-4123.
Patel, K.R., Smith, P.F., and Mayberry, W.R. (1978). Comparison of lipids from Spiroplasma citri and corn stunt spiroplasma. Journal of Bacteriology 136, 829-831.
Peek, R.M., Jr., and Crabtree, J.E. (2006). Helicobacter infection and gastric neoplasia. The Journal of Pathology 208, 233-248.
Petersen, A.M., Sorensen, K., Blom, J., and Krogfelt, K.A. (2001). Reduced intracellular survival of Helicobacter pylori vacA mutants in comparison with their wild-types indicates the role of VacA in pathogenesis. FEMS Immunology and Medical Microbiology 30, 103-108.
Pethe, K., Swenson, D.L., Alonso, S., Anderson, J., Wang, C., and Russell, D.G. (2004). Isolation of Mycobacterium tuberculosis mutants defective in the arrest of phagosome maturation. Proceedings of the National Academy of Sciences of the United States of America 101, 13642-13647.
Portal-Celhay, C., and Perez-Perez, G.I. (2006). Immune responses to Helicobacter pylori colonization: mechanisms and clinical outcomes. Clinical Science 110, 305-314.
Salama, N.R., Otto, G., Tompkins, L., and Falkow, S. (2001). Vacuolating cytotoxin of Helicobacter pylori plays a role during colonization in a mouse model of infection. Infection and Immunity 69, 730-736.
Schraw, W., Li, Y., McClain, M.S., van der Goot, F.G., and Cover, T.L. (2002). Association of Helicobacter pylori vacuolating toxin (VacA) with lipid rafts. The Journal of Biological Chemistry 277, 34642-34650.
Schroder, N.W., Schombel, U., Heine, H., Gobel, U.B., Zahringer, U., and Schumann, R.R. (2003). Acylated cholesteryl galactoside as a novel immunogenic motif in Borrelia burgdorferi sensu stricto. The Journal of Biological Chemistry 278, 33645-33653.
Segal, E.D., Falkow, S., and Tompkins, L.S. (1996). Helicobacter pylori attachment to gastric cells induces cytoskeletal rearrangements and tyrosine phosphorylation of host cell proteins. Proc Natl Acad Sci U S A 93, 1259-1264.
Selbach, M., Moese, S., Hurwitz, R., Hauck, C.R., Meyer, T.F., and Backert, S. (2003). The Helicobacter pylori CagA protein induces cortactin dephosphorylation and actin rearrangement by c-Src inactivation. The EMBO Journal 22, 515-528.
Stein, M., Bagnoli, F., Halenbeck, R., Rappuoli, R., Fantl, W.J., and Covacci, A. (2002). c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Molecular Microbiology 43, 971-980.
Stein, M., Rappuoli, R., and Covacci, A. (2000). Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proceedings of the National Academy of Sciences of the United States of America 97, 1263-1268.
Suerbaum, S., and Michetti, P. (2002). Helicobacter pylori infection. The New England Journal of Medicine 347, 1175-1186.
Taylor, D.E. (1999). Helicobacter pylori and its genome: lessons from the treasure map. Canadian Journal of Gastroenterology = Journal Canadien de Gastroenterologie 13, 218-223.
Tsutsumi, R., Higashi, H., Higuchi, M., Okada, M., and Hatakeyama, M. (2003). Attenuation of Helicobacter pylori CagA x SHP-2 signaling by interaction between CagA and C-terminal Src kinase. The Journal of Biological Chemistry 278, 3664-3670.
Tsutsumi, R., Takahashi, A., Azuma, T., Higashi, H., and Hatakeyama, M. (2006). Focal adhesion kinase is a substrate and downstream effector of SHP-2 complexed with Helicobacter pylori CagA. Molecular and Cellular Biology 26, 261-276.
Uemura, N., Okamoto, S., Yamamoto, S., Matsumura, N., Yamaguchi, S., Yamakido, M., Taniyama, K., Sasaki, N., and Schlemper, R.J. (2001). Helicobacter pylori infection and the development of gastric cancer. The New England Journal of Medicine 345, 784-789.
Underhill, D.M., and Ozinsky, A. (2002). Phagocytosis of microbes: complexity in action. Annual Review of Immunology 20, 825-852.
van der Wel, N., Hava, D., Houben, D., Fluitsma, D., van Zon, M., Pierson, J., Brenner, M., and Peters, P.J. (2007). M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129, 1287-1298.
Vieira, O.V., Botelho, R.J., and Grinstein, S. (2002). Phagosome maturation: aging gracefully. The Biochemical Journal 366, 689-704.
Wang, H.J., Cheng, W.C., Cheng, H.H., Lai, C.H., and Wang, W.C. (2012). Helicobacter pylori cholesteryl glucosides interfere with host membrane phase and affect type IV secretion system function during infection in AGS cells. Molecular Microbiology 83, 67-84.
Watanabe, T., Tada, M., Nagai, H., Sasaki, S., and Nakao, M. (1998). Helicobacter pylori infection induces gastric cancer in mongolian gerbils. Gastroenterology 115, 642-648.
WHO (1994). IARC monographs on the evaluation of carcinogenic risks to humans. Schistosomes, Liver Flukes and Helicobacter pylori 61, 177-241.
Wunder, C., Churin, Y., Winau, F., Warnecke, D., Vieth, M., Lindner, B., Zahringer, U., Mollenkopf, H.J., Heinz, E., and Meyer, T.F. (2006). Cholesterol glucosylation promotes immune evasion by Helicobacter pylori. Nature Medicine 12, 1030-1038.
Xiang, Z., Censini, S., Bayeli, P.F., Telford, J.L., Figura, N., Rappuoli, R., and Covacci, A. (1995). Analysis of expression of CagA and VacA virulence factors in 43 strains of Helicobacter pylori reveals that clinical isolates can be divided into two major types and that CagA is not necessary for expression of the vacuolating cytotoxin. Infection and Immunity 63, 94-98.
Zheng, P.Y., and Jones, N.L. (2003). Helicobacter pylori strains expressing the vacuolating cytotoxin interrupt phagosome maturation in macrophages by recruiting and retaining TACO (coronin 1) protein. Cellular Microbiology 5, 25-40.