研究生: |
程子芸 Cheng, Tzu Yun |
---|---|
論文名稱: |
具自我聚合能力的功能性奈米胜肽材料於再生醫學上的應用 Characterization of Functionalized Self-Assembling Nano-peptides for Regenerative Medicine Applications |
指導教授: |
王子威
Wang, Tzu-Wei |
口試委員: |
張晃猷
Chang, Hwan-You 陳敏弘 Chen, Ming-Hong |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 63 |
中文關鍵詞: | 奈米材料 、功能性 、胜肽 、水膠 、神經幹細胞 、組織再生 、創傷性腦損傷 、止血 |
外文關鍵詞: | Nanomaterial, Functionalized, Peptide, Hydrogel, Neural Stem Cells, Tissue Regeneration, Traumatic Brain Injury, Hemostasis |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究致力於發展具自我聚合能力的功能性奈米胜肽材料(SAPs)於再生醫學上的應用。自我聚合能力的奈米胜肽材料(SAPs)具有在人體環境成膠的特質並且擁有以胺基酸作為材料的特點; 此外,奈米胜肽材料(SAPs)除了本身可作為三維立體網狀支架外,亦可當作包覆幹細胞或基因藥物的載體,,未來可望在生物醫學方面有廣泛的應用價值,極具發展潛力。藉由特殊的序列設計,在RADA16 的碳端延伸功能性的序列,如: GRGDS, YIGSR 以及IKVAV,我們發展出具自我聚合能力並且能分別提供促進細胞貼附、肝組織的再生與修復,以及促進神經幹細胞的成熟分化與突觸外生等額外效果的奈米胜肽材料。本研究期望能將此具自我聚合能力的功能性奈米胜肽材料應用於止血、肝組織再生與修復以及腦組織的重建。
本研究的第一部分為物化性質以及成膠性值的探討。透過建立滴定取線求得各胜肽的酸解離常數(pKa)以及等電點(pI),利用圓二色光譜分析胜肽的旋光性質,證實各胜肽皆具有beta-sheet折板二級結構,藉由原子力顯微鏡觀測得到胜肽排列堆疊形成直徑約25奈米的纖維網狀結構,最後藉由流變性質的分析探討機械強度與成膠行為。
第二部分為止血及肝組織再生與修復的應用。我們在大鼠的肝臟製造穿刺大量流血的傷口模式,當胜肽材料注射入傷口時迅速成膠並形成奈米纖維屏障,進而達到快速止血的效果,大幅降低止血所需的時間到約只需8秒左右。進一步的組織分析結果可看出末端接上GRGDS, YIGSR特殊序列的胜肽,在2週之後肝臟組織的修復方面皆有較良好的表現。
第三部分為中樞神經系統腦組織創傷重建的應用。我們特別將水膠包覆神經幹細胞,期望達到神經細胞再生的效果,並且進一步促進腦組織修復與重建。首先透過體外的分析,探討被包覆在三維水膠內進行培養的神經幹細胞行為表現。經由Live/Dead的染色分析及MTS定量分析,證實細胞具有良好的活性以及增生現象。此外,透過免疫染色分析,顯示被包覆的幹細胞能具有可塑性,並且驗證了末端接上IKVAV特殊序列的胜肽具有促進神經幹細胞誘導分化成神經細胞的效果。總結體外細胞培養的結果,驗證此胜肽水膠在成膠過程中,不會對神經幹細胞造成過度的傷害,具有良好的生物相容性。進一步的動物實驗,我們建立創傷性腦損傷大鼠模式,並且植入包覆有神經幹細胞的水膠,為了追蹤植入的細胞,在規劃的其中一些組別,我們特地將幹細胞進行螢光蛋白轉染標定。組織收集後的外觀結果,可證實胜肽水膠能夠很完整地填滿傷口缺陷處; 在組織切片圖分析中,證實植入的神經幹細胞存活良好並且只有觀測到短期的輕微發炎反應,末端接上IKVAV特殊序列的胜肽在神經細胞的再生及腦組織重建方面也有良好的表現。
本研究成功發展出具自我聚合能力的功能性奈米胜肽材料應用於止血、肝組織再生與修復以及腦組織的重建。透過在RADA16 的末端延伸特殊功能序列以及包覆神經幹細胞,提升了自我聚合能力的奈米胜肽的應用價值。根據體外分析實驗,證實了此胜肽水膠具有良好的物化性質、生物相容性、以及自我成膠的特性,並且可以做為一個幹細胞培養基材。動物實驗結果顯示所開發出來的功能性奈米胜肽材料可有效促進止血以及肝臟與腦神經組織的再生。總結本研究所發展的具自我聚合能力的功能性奈米胜肽為一個具有前瞻性的新穎材料,可望在生醫領域上有相當大的應用價值及發展潛力。
With the property of sol-gel transition in physiological condition and numerous advantages from peptide-based material, self assembling peptide (SAP) has been regarded as a promising 3D hydrogel scaffold or cell/gene (drug) carrier for the applications in tissue engineering and drug delivery system. The additional functional motifs with various modification ratios and multi-extended diversity can be conjugated and extended at the terminal residue sequence of specific-designed SAPs to enrich SAP possessing therapeutic functionality for different biopharmaceutical applications and serve as medical disease treatment modality. In this study, we specifically enriched RADA16, one of the widely used SAPs, with different functional motifs and evaluated the medical applications of the functionalized SAPs in hemostasis, liver tissue regeneration and brain neural tissue repair in the central nervous system.
In the first part of this study, the physiochemical properties and gelation mechanism of SAPs were in detail investigated. The pKa1, pKa2, and isoelectric point (pI) was obtained by pH titration curve. The peptide showed net-charged at neutral pH value. The protein secondary structure of β-sheet arrangement was confirmed by circular dichroism (CD) spectroscopy. The morphology of nanofibers about 25nm diameter was observed by atomic force microscopy (AFM). The gelation behavior in terms of mechanical property of hydrogel was determined by oscillatory rheology test. As for in vitro experiments, the relative low cytotoxicity of peptide hydrogel was examined by Live/Dead assay and the high cell proliferation ability was shown in 3D hydrogel culture by MTS assay. The results demonstrated that the encapsulated neural stem cells well survived with 3D culture in SAP hydrogel. We also found that even with extended motifs, the gelation behavior, physical and chemical properties of functionalized SAPs were still preserved. It is believed that the functionalized SAPs can be a promising material for follow-up tissue engineering applications.
In hemostasis and liver tissue regeneration study, specifically extended fragments of functional motifs derived from fibronectin and laminin, GRGDS and YIGSR, was designed to evaluate the capability of these functional SAPs in the effect of immediate hemostasis and accelerative liver tissue regeneration. The results showed that hemostasis can be achieved within 10 seconds and the histological analyses demonstrated by H/E stain and immunohistochemistry revealed that SAPs with these extended functional motifs significantly enhanced liver tissue regeneration in rat liver wound model. It is reported that SAPs enriched with the extended functional motifs not only maintained their spontaneous self-assembly property but also extensively advanced the potential therapeutic effect in hemostasis and liver tissue regeneration.
In the study of brain neural tissue repair in the central nervous system, the functionalized RADA16-IKVAV peptide hydrogel was used to encapsulate neural stem cells (NSCs) for investigation of the effectiveness in brain tissue regeneration. The results showed that after 6 weeks transplantation, the regenerative extracellular matrix (ECM) of brain neural tissue was noticed. The specific neuronal protein markers, such as βIII tubulin, MAP2, NF-H were positively stained in the region of wound defect area, suggesting regenerative process of neuronal cells in the brain cerebral cortex.
In summary, we have successfully developed functionalized SAPs with multiple extended motifs, including RADA16-GRGDS, RADA16-YIGSR and RADA16-IKVAV, and their physiochemical properties were also carefully evaluated for the comparison with RADA16 nanopeptides. These functionalized SAPs can not only be used alone as 3D nanoscale scaffold for immediate hemostasis and accelerative liver tissue wound healing, but also be incorporated with neural stem cells for the improvement of brain tissue repair in the central nervous system.
1. Langer R, Vacanti JP, Vacanti CA, Atala A, Freed LE, Vunjak-Novakovic G. Tissue engineering: biomedical applications. Tissue Eng 1995;1:151-161.
2. Langer R. Tissue engineering: a new field and its challenges. Pharm Res 1997;14:840-841.
3. Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues--state of the art and future perspectives. J Biomater Sci Polym Ed 2001;12:107-124.
4. Edelman DB, Keefer EW. A cultural renaissance: in vitro cell biology embraces three-dimensional context. Exp Neurol 2005;192:1-6.
5. Zhang S, Gelain F, Zhao X. Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures. Semin Cancer Biol 2005;15:413-420.
6. Semino CE. Self-assembling peptides: from bio-inspired materials to bone regeneration. J Dent Res 2008;87:606-616.
7. Nowak AP, Breedveld V, Pakstis L, Ozbas B, Pine DJ, Pochan D, Deming TJ. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 2002;417:424-428.
8. Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001;294:1684-1688.
9. Zhang S, Holmes T, Lockshin C, Rich A. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci U S A 1993;90:3334-3338.
10. Yanlian Y, Ulung K, Xiumei W, Horii A, Yokoi H, Shuguang Z. Designer self-assembling peptide nanomaterials. Nano Today 2009;4:193-210.
11. Kretsinger JK, Haines LA, Ozbas B, Pochan DJ, Schneider JP. Cytocompatibility of self-assembled beta-hairpin peptide hydrogel surfaces. Biomaterials 2005;26:5177-5186.
12. Lazar KL, Miller-Auer H, Getz GS, Orgel JP, Meredith SC. Helix-turn-helix peptides that form alpha-helical fibrils: turn sequences drive fibril structure. Biochemistry 2005;44:12681-12689.
13. Lomander A, Hwang W, Zhang S. Hierarchical self-assembly of a coiled-coil peptide into fractal structure. Nano Lett 2005;5:1255-1260.
14. Tan TC, Smith P, Pegman M. RADA--A research and development advisor incorporating artificial intelligence techniques and expert system approaches. Expert Syst Appl 1990;1:171-178.
15. Hangyu Zhang, Hanlin Luo, Xiaojun Zhao. Mechanistic Study of Self-Assembling Peptide RADA16-I in Formation of Nanofibers and Hydrogels. Journal of Nanotechnology in Engineering and Medicine 2010;1:010007.
16. Michael R. Caplan, Peter N. Moore, Shuguang Z, Roger D. Kamm, Douglas A. Lauffenburger. Self-Assembly of a β-Sheet Protein Governed by Relief of Electrostatic Repulsion Relative to van der Waals Attraction. 2000:627-631.
17. Andrea Desii, Federica Chiellini, Celia Duce, Lisa Ghezzi, Susanna Monti, Maria R. Tine, Roberto Solaro. Influence of Structural Features on the Self-Assembly of Short Ionic
Oligopeptides. Journal of Polymer Science: Part A 2010;48:889-897.
18. Ye Z, Zhang H, Luo H, Wang S, Zhou Q, DU X, Tang C, Chen L, Liu J, Shi YK, Zhang EY, Ellis-Behnke R, Zhao X. Temperature and pH effects on biophysical and morphological properties of self-assembling peptide RADA16-I. J Pept Sci 2008;14:152-162.
19. Yokoi H, Kinoshita T, Zhang S. Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proc Natl Acad Sci U S A 2005;102:8414-8419.
20. Ellis-Behnke RG, Liang YX, Tay DK, Kau PW, Schneider GE, Zhang S, Wu W, So KF. Nano hemostat solution: immediate hemostasis at the nanoscale. Nanomedicine 2006;2:207-215.
21. Elsa Genove, Colette Shen, Shuguang Zhanga, Carlos E. Semino. The effect of functionalized self-assembling peptide scaffolds on human aortic endothelial cell function. Biomaterials 2005;26:3341-3351.
22. Kun Mi, Guixia Wang, Zijia Liu, Zhihua Feng, Ben Huang, Xiaojun Zhao. Influence of a Self-Assembling Peptide, RADA16, Compared with Collagen I and Matrigel on the Malignant Phenotype of Human Breast-Cancer Cells in 3D Cultures and in vivo. Macromolecular bioscience 2009;9:437-443.
23. Song H, Zhang L, Zhao X. Hemostatic efficacy of biological self-assembling peptide nanofibers in a rat kidney model. Macromol Biosci 2010;10:33-39.
24. Shuguang Z. Emerging biological materials through molecular self-assembly. Biotechnology Advances 2002;20:321-339.
25. Gelain F, Unsworth LD, Zhang S. Slow and sustained release of active cytokines from self-assembling peptide scaffolds. J Control Release 2010;145:231-239.
26. Tang F, Zhao X. Interaction between a self-assembling peptide and hydrophobic compounds. J Biomater Sci Polym Ed 2010;21:677-690.
27. Gelain F, Bottai D, Vescovi A, Zhang S. Designer Self-Assembling Peptide Nanofiber Scaffolds for Adult Mouse Neural Stem Cell 3-Dimensional Cultures. PLoS ONE 2006;1:e119.
28. Genove E, Schmitmeier S, Sala A, Borros S, Bader A, Griffith LG, Semino CE. Functionalized self-assembling peptide hydrogel enhance maintenance of hepatocyte activity in vitro. J Cell Mol Med 2009;13:3387-3397.
29. Jung JP, Nagaraj AK, Fox EK, Rudra JS, Devgun JM, Collier JH. Co-assembling peptides as defined matrices for endothelial cells. Biomaterials 2009;30:2400-2410.
30. Zou Z, Zheng Q, Wu Y, Guo X, Yang S, Li J, Pan H. Biocompatibility and bioactivity of designer self-assembling nanofiber scaffold containing FGL motif for rat dorsal root ganglion neurons. J Biomed Mater Res A 2010;95:1125-1131.
31. Mari-Buye N, Semino CE. Differentiation of mouse embryonic stem cells in self-assembling peptide scaffolds. Methods Mol Biol 2011;690:217-237.
32. Ho D, Fitzgerald M, Bartlett CA, Zdyrko B, Luzinov IA, Dunlop SA, Swaminathan Iyer K. The effects of concentration-dependent morphology of self-assembling RADA16 nanoscaffolds on mixed retinal cultures. Nanoscale 2011;3:907-910.
33. Wu J, Mari-Buye N, Muinos TF, Borros S, Favia P, Semino CE. Nanometric self-assembling peptide layers maintain adult hepatocyte phenotype in sandwich cultures. J Nanobiotechnology 2010;8:29.
34. Galler KM, Aulisa L, Regan KR, D'Souza RN, Hartgerink JD. Self-assembling multidomain peptide hydrogels: designed susceptibility to enzymatic cleavage allows enhanced cell migration and spreading. J Am Chem Soc 2010;132:3217-3223.
35. Zhang F, Shi GS, Ren LF, Hu FQ, Li SL, Xie ZJ. Designer self-assembling peptide scaffold stimulates pre-osteoblast attachment, spreading and proliferation. J Mater Sci Mater Med 2009;20:1475-1481.
36. Cigognini D, Satta A, Colleoni B, Silva D, Donega M, Antonini S, Gelain F. Evaluation of early and late effects into the acute spinal cord injury of an injectable functionalized self-assembling scaffold. PLoS One 2011;6:e19782.
37. Jiro TAKEI. Self-Assembling 3-Dimensional Scaffold Peptide Hydrogel for Bone and General Tissue Regeneration. 2005;3:71-79.
38. Kumada Y, Zhang S. Significant type I and type III collagen production from human periodontal ligament fibroblasts in 3D peptide scaffolds without extra growth factors. PLoS One 2010;5:e10305.
39. Tysseling VM, Sahni V, Pashuck ET, Birch D, Hebert A, Czeisler C, Stupp SI, Kessler JA. Self-assembling peptide amphiphile promotes plasticity of serotonergic fibers following spinal cord injury. J Neurosci Res 2010;88:3161-3170.
40. Webber C, Zochodne D. The nerve regenerative microenvironment: early behavior and partnership of axons and Schwann cells. Exp Neurol 2010;223:51-59.
41. Yang Z, Zhao X. A 3D model of ovarian cancer cell lines on peptide nanofiber scaffold to explore the cell-scaffold interaction and chemotherapeutic resistance of anticancer drugs. Int J Nanomedicine 2011;6:303-310.
42. Rudra JS, Tian YF, Jung JP, Collier JH. A self-assembling peptide acting as an immune adjuvant. Proc Natl Acad Sci U S A 2010;107:622-627.
43. Jennifer L West, Jeffrey A Hubbell. Polymeric Biomaterials with Degradation Sites for Proteases Involved in Cell Migration. Macromolecules 1999;32:241-244.
44. Jabbari E. Bioconjugation of hydrogels for tissue engineering. Curr Opin Biotechnol 2011;22:655-660.
45. E. Helene Sage, Paul Bornstein. Extracellular Proteins That Modulate Cell-Matrix Interaction. The Journal of biological chemistry 1991;266.
46. Chada D, Mather T, Nollert MU. The synergy site of fibronectin is required for strong interaction with the platelet integrin alphaIIbbeta3. Ann Biomed Eng 2006;34:1542-1552.
47. Pierschbacher MD, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 1984;309:30-33.
48. Nomizu M, Kim WH, Yamamura K, Utani A, Song SY, Otaka A, Roller PP, Kleinman HK, Yamada Y. Identification of cell binding sites in the laminin alpha 1 chain carboxyl-terminal globular domain by systematic screening of synthetic peptides. J Biol Chem 1995;270:20583-20590.
49. Roland Carlsson, Eva Engvall, Aaron Freeman, Erkki Ruoslahti. Laminin and fibronectin in cell adhesion: Enhanced adhesion of cells from regenerating liver to laminin. Cell Biology 1981;78:2403-2406.
50. Tashiro K. A synthetic peptide containing the IKVAV sequence from the A chain of laminin mediates cell attachment, migration, and neurite outgrowth. The Journal of Biological Chemistry 1989;264:16174-16182.
51. Tysseling-Mattiace VM, Sahni V, Niece KL, Birch D, Czeisler C, Fehlings MG, Stupp SI, Kessler JA. Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J Neurosci 2008;28:3814-3823.
52. Li Q, Chau Y. Neural differentiation directed by self-assembling peptide scaffolds presenting laminin-derived epitopes. J Biomed Mater Res A 2010;94:688-699.
53. Tomizawa Y. Clinical benefits and risk analysis of topical hemostats: a review. J Artif Organs 2005;8:137-142.
54. Vink R, Bullock MR. Traumatic brain injury: therapeutic challenges and new directions. Neurotherapeutics 2010;7:1-2.
55. Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol 2008;7:728-741.
56. Guo J, Leung KK, Su H, Yuan Q, Wang L, Chu TH, Zhang W, Pu JK, Ng GK, Wong WM, Dai X, Wu W. Self-assembling peptide nanofiber scaffold promotes the reconstruction of acutely injured brain. Nanomedicine 2009;5:345-351.
57. Longhi L, Zanier ER, Royo N, Stocchetti N, McIntosh TK. Stem cell transplantation as a therapeutic strategy for traumatic brain injury. Transpl Immunol 2005;15:143-148.
58. Wennersten A, Meier X, Holmin S, Wahlberg L, Mathiesen T. Proliferation, migration, and differentiation of human neural stem/progenitor cells after transplantation into a rat model of traumatic brain injury. J Neurosurg 2004;100:88-96.
59. Bustin SA, Benes V, Nolan T, Pfaffl MW. Quantitative real-time RT-PCR--a perspective. J Mol Endocrinol 2005;34:597-601.
60. Laplaca MC, Prado GR. Neural mechanobiology and neuronal vulnerability to traumatic loading. J Biomech 2010;43:71-78.
61. Tate CC, Shear DA, Tate MC, Archer DR, Stein DG, LaPlaca MC. Laminin and fibronectin scaffolds enhance neural stem cell transplantation into the injured brain. J Tissue Eng Regen Med 2009;3:208-217.
62. Paoloni GA, Chen H, Antonarakis SE. Cloning of a novel human neural cell adhesion molecule gene (NCAM2) that maps to chromosome region 21q21 and is potentially involved in Down syndrome. Genomics 1997;43:43-51.
63. Schmid RS, Maness PF. L1 and NCAM adhesion molecules as signaling coreceptors in neuronal migration and process outgrowth. Curr Opin Neurobiol 2008;18:245-250.
64. Ohsawa I, Takamura C, Kohsaka S. Fibulin-1 binds the amino-terminal head of beta-amyloid precursor protein and modulates its physiological function. J Neurochem 2001;76:1411-1420.
65. Egles C, Claudepierre T, Manglapus MK, Champliaud MF, Brunken WJ, Hunter DD. Laminins containing the beta2 chain modulate the precise organization of CNS synapses. Mol Cell Neurosci 2007;34:288-298.
66. Libby RT, Lavallee CR, Balkema GW, Brunken WJ, Hunter DD. Disruption of laminin beta2 chain production causes alterations in morphology and function in the CNS. J Neurosci 1999;19:9399-9411.
67. Cohen J, Nurcombe V, Jeffrey P, Edgar D. Developmental loss of functional laminin receptors on retinal ganglion cells is regulated by their target tissue, the optic tectum. Development 1989;107:381-387.
68. Pevny L, Rao MS. The stem-cell menagerie. Trends Neurosci 2003;26:351-359.
69. Abrous DN, Koehl M, Le Moal M. Adult neurogenesis: from precursors to network and physiology. Physiol Rev 2005;85:523-569.
70. Evans J, Sumners C, Moore J, Huentelman MJ, Deng J, Gelband CH, Shaw G. Characterization of mitotic neurons derived from adult rat hypothalamus and brain stem. J Neurophysiol 2002;87:1076-1085.
71. Bruno Clement, Bartolome Segui-Real, Pierre Savagner, Hynda K. Kleinman, Yoshihiko Yamada. Hepatocyte Attachment to Laminin Is Mediated through Multiple Receptors. The Journal of Cell Biology 1990:185-192.
72. Midwood KS, Mao Y, Hsia HC, Valenick LV, Schwarzbauer JE. Modulation of cell-fibronectin matrix interactions during tissue repair. J Investig Dermatol Symp Proc 2006;11:73-78.
73. Lee J, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B Rev 2008;14:61-86.
74. Liesi P. Extracellular matrix and neuronal movement. Experientia 1990;46:900-907.
75. Adams DN, Kao EY, Hypolite CL, Distefano MD, Hu WS, Letourneau PC. Growth cones turn and migrate up an immobilized gradient of the laminin IKVAV peptide. J Neurobiol 2005;62:134-147.
76. Berrier AL, Yamada KM. Cell-matrix adhesion. J Cell Physiol 2007;213:565-573.
77. Harunaga JS, Yamada KM. Cell-matrix adhesions in 3D. Matrix Biol 2011;30:363-368.
78. Horner PJ, Gage FH. Regenerating the damaged central nervous system. Nature 2000;407:963-970.
79. Lindvall O, McKay R. Brain repair by cell replacement and regeneration. Proc Natl Acad Sci U S A 2003;100:7430-7431.
80. Schmidt CE, Leach JB. Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng 2003;5:293-347.
81. Modo M, Stroemer RP, Tang E, Patel S, Hodges H. Effects of implantation site of stem cell grafts on behavioral recovery from stroke damage. Stroke 2002;33:2270-2278.
82. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol 2010;119:7-35.