簡易檢索 / 詳目顯示

研究生: 王宗聖
Wang, Zong-Shenq
論文名稱: 鐵鉿氧軟磁薄膜之微結構與磁性質分析及功率電感與鐵鉿氧軟磁薄膜整合之性能
Microstructure and Magnetic Properties of Fe-Hf-O Soft Magnetic Films and the Performance of Integrated Inductor with the Fe-Hf-O Films
指導教授: 杜正恭
Duh, Jenq-Gong
口試委員: 金重勳
陳士堃
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 86
中文關鍵詞: 軟磁薄膜鐵鉿氧導磁率功率電感
外文關鍵詞: Soft magnetic thin film, Fe-Hf-O, permeability, inductor
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,輕、薄、短、小蔚然成為消費性電子產品的發展趨勢,若將鐵磁薄膜與電感整合,有助於電感尺寸的縮減以降低電子產品中直流/直流電源轉換器(DC/DC converter)的體積。本研究之目的為開發鐵磁薄膜並將其與功率電感結合。第一部份,以直流磁控濺鍍系統在O2與Ar的氣氛下,成功製備具奈米晶與非晶之混合相的Fe-Hf-O薄膜。當通入的氧流量為1.2 sccm時,成份為Fe58.8Hf13.1O28.1,其飽和磁化量約為10.6 kG,電阻率為254 μΩ-cm,導磁率為250。此外,在氧流量固定為1.2 sccm時,探討Fe-Hf-O薄膜的厚度對磁性質之影響。當膜厚由0.5 μm增加到5.5 μm時,其飽和磁化量與電阻率無顯著的變化,矯頑場與導磁率分別由 5 Oe 和300下降到0.5 Oe 與160。
    在第二部份,將不同厚度的FeHfO與去除上遮蔽鼓的工字型電感整合,整合型電感的感值隨膜厚增加,感量的提升由3 % 提升到25%,且直流重疊電流(DC bias current)之表現也有所改善。另外,更進一步將整合型電感的膜厚固定為5.5 μm,探討繞線圈數為7, 9, 11和15圈時,對感值與直流重疊電流的影響。當繞線圈數增加時,感值隨之提升,但直流重疊電流卻因而下降,整合型電感的繞線圈數與膜厚分別為11圈與5.5 μm時,感值與直流重疊電流為1.34 μH和1.76 A,可適用於直流/直流電源轉換器。


    Soft magnetic thin films integrated to magnetic component, i.e. inductor, are considered as a potential solution to meet increasing demand for smaller dimension and light weight power conversion devices in portable electron products. In this study, the influences of oxygen flow rate on magnetic and high frequency properties of as-deposited Fe-Hf-O thin films were analyzed. These films exhibited mixed phases of α-Fe nanograins and amorphous HfO2 phase, showing nanocrystalline structure and soft magnetic properties. The Fe58.8Hf13.1O28.1 film with the optimum O2 flow rate of 1.2 sccm showed high saturation magnetization of 10.6 kG, high resistivity of 254 μΩ-cm, and flat μ' characteristics of 250 up to 1 GHz. The thickness effects on the characterization of Fe-Hf-O film with the O2 flow rate of 1.2 sccm were also investigated. The composition, resistivity, and saturation magnetization nearly maintained constant with varying thickness. As the film thickness increased from 0.5 to 5.5 μm, the coercivity (HC) decreased to a minimum value of 0.5 Oe and complex permeability gradually declined from nearly 300 to 160.
    In addition, a novel structure was proposed to incorporate commercially available inductor with as-fabricated Fe-Hf-O films of 0.5, 1.1, 3.3, and 5.5 μm. The inductance of integrated inductors increased from 3 % to 25 % with Fe-Hf-O film. The DC current characteristic of integrated inductor was improved by a thicker film. The performance of integrated inductors with 5.5-μm FeHfO and various coil turns of 7, 9, 11, and 15 was discussed. The integrated inductor with coil turns of 11 and 5.5 μm thick Fe-Hf-O film displayed high inductance of 1.34 μH and superimposed current of 1.76 A, exhibiting potential applications in DC/DC converter.

    Contents I List of Table III Figure Captions IV Abstract VII Chapter 1 Introduction 1 Chapter 2 Literature Survey 5 2.1 Nanocrystalline soft magnetic materials. 5 2.1.1 Grain size effects on soft magnetic material. 5 2.1.2 FeCo-based magnetic materials. 7 2.1.3 Co-based magnetic materials. 10 2.1.4 Fe-based magnetic materials. 11 2.2. Introduction to inductor 11 2.2.1 Background 11 2.2.2 Magnetic Circuit 11 2.2.3 Inductor basics 13 2.2.4 Requirements of magnetic thin films 14 2.2.5 Application of soft magnetic thin films in inductor 15 2.2.6 Energy loss 17 Chapter 3 Experimental procedure 32 3.1 Deposition Techniques 32 3.2 Integration process 32 3.3 Measurement and Analysis 33 3.3.1 Composition analysis 33 3.3.2 Phase identification and Microstructure Investigation 33 3.3.3 Measurement of Magnetization 34 3.3.4 Permeability Characterization 34 3.3.5 Resistivity Measurement and Thickness of Films 35 3.3.6 Frequency performance and DC bias current characterization of integrated inductor 35 Chapter 4 Results and Discussion 41 4.1 The Effect of Oxygen Flow Rates on Magnetic Property and High Frequency Characteristic of Fe-Hf-O Thin Films 41 4.1.1 Composition and Microstructure Analysis of Fe-Hf-O Films.. …41 4.1.2 Magnetic Properties and Electrical Characteristics of Fe-Hf-O Films 43 4.1.3 Evolution of High Frequency Behavior 44 4.2 Effects of Thickness on the Magnetic Properties of Nanocrystalline Fe-Hf-O Films 45 4.2.1 Composition and Microstructure Analysis of FeHfO Films 46 4.2.2 Magnetic and Electrical Properties of FeHfO Films with Different Thickness 46 4.2.3 Permeability Spectrum of Fe-Hf-O Films 47 4.3 Thickness Dependence of Fe-Hf-O Films on the Characteristics of Integrated Inductor 50 4.3.1 High Frequency Performance of Integrated Inductors 50 4.3.2 DC Bias Current Characteristic of Integrated Inductors 52 4.4 The Performance of Integrated Inductors as a Function of Coil Turns 53 4.5 Future Perspective 56 Chapter 5 Conclusions 79 References 81

    [1] Q. Li, M. Lim, J. Sun, A. Ball, Y. Ying, F. C. Lee, K. D. T. Ngo, “Technology road map for high frequency integrated DC-DC converter,” in Proc. Applied Power Electronics Conf. APEC’10, Palm Springs, CA (2010) 533.
    [2] T. Hirata and M. Naoe, J. Appl. Phys. 73 (1993) 6585.
    [3] K. Suzuki, A. Makino, A. Inoue, and T. Masumoto, J. Appl. Phys. 74 (1993) 3316.
    [4] A. Makino and Y. Hayakawa, IEEE Trans. Magn. 31 (1995) 3874.
    [5] K. H. Kim, H. W. Choi, J. Kim, S. R. Kim, K. Y. Kim, S. H. Han, and H. J. Kim, IEEE Trans. Magn. 36 (2000) 2656.
    [6] B. C. Park, N. D. Ha, J. S. Roh, T. S. Yoon, B. K. Min, C. G. Kim, and C. O. Kim, Phys. stat. sol. (a) 201, (2004) 1842.
    [7] X. D. Jiang, H. W. Zhang, Q.Y. Wen, W. L. Zhang, S.Y. and X. L. Tang , Mater. Sci. Eng. B 103 (2003) 32.
    [8] K. Ohkubo, Y. Arimoto, T. Fumoto, and H. Yamasaki, IEEE Trans. Magn. 29 (1993) 2530.
    [9] S. Ohnuma, H. Fujimori, T. Masumoto , X. Y. Xiong, D. H. Ping, and K. Hono, Appl. Phys. Lett. 82 (2003) 946.
    [10] V. Bekker, K. Seemann, H. Leiste, J. Magn. Magn. Mater. 296 (2006) 37.
    [11] N. D. Ha, A. T. Le, M. H. Phan, H. Lee, and C. O. Kim, Mater. Sci. Eng. B 139 (2007) 37.
    [12] Y. W. Peng, S. Li, K. X. Liu, J. G. Duh and M. Yamaguchi, Phys. Stat. Sol. (c) 4 (2007) 4593.
    [13] C. L. Kuo, S. D. Li and J. G. Duh, Appl. Surf. Sci. 254 (2008) 7417.
    [14] G. Herzer, IEEE Trans. Magn. 26 (1990) 1397.
    [15] Y. Hayakawa, A. Makino, H. Fujimori, A. Inoue, J. Appl. Phys. 81 (1997) 3747.
    [16] S. Yoshida, H. Ono, S. Ando, F. Tsuda, T. Ito, Y. Shimada, M. Yamaguchi, K. I. Arai, S. Ohnuma, and T. Masumoto, IEEE Trans. Magn. 37 (2001) 2401.
    [17] Y. Yoshizawa, S. Oguma, and K. Yamauchi, J. Appl. Phys. 64 (1988) 6044.
    [18] K. Suzuki, A. Makino, A. Inoue, and T. Masumoto, J. Appl. Phys. 70 (1991) 6232.
    [19] P. Petrovič, I. Brovko, T. Zemčík, M. Zatroch, M. Konč, T. Švec and M. Dubovinský, J. Magn. Magn. Mater. 112 (1992) 331.
    [20] M. Müller and N. Mattern, J. Magn. Magn. Mater. 136 (1994) 79.
    [21] A. Makino, T. Hatanai, A. Inoue and T. Masumoto, Mater. Sci. Eng. A, 226-228, (1997) 594.
    [22] R. Alben, J. J. Becker, and M. C. Chi, J. Appl. Phys. 49 (1978) 1653.
    [23] R. M. Bozorth, Ferromagnetism, Princeton (1951) 811.
    [24] M. Getzlaff, Fundamentals of Magnetism, Springer (2007) 58.
    [25] C. Y. Li, J. G. Duh, Appl. Surf. Sci. 244 (2005) 477.
    [26] H. K. Chen, S. H. Li., and J. G. Duh, J. Electron Mater. 34 (2005) 1480.
    [27] 陳弘凱,“以RF磁控濺鍍法鍍製多元合金軟磁薄膜及其磁性質與高頻特性分析”,國立清華大學工程與系統科學系碩士論文 (2005)

    [28] M. Senda and O. Ishii, IEEE Trans. Magn. 30 (1994) 155.
    [29] S. D. Li, Z. Huang, J. G. Duh, and M. Yamaguchi, Appl. Phys. Lett. 92 (2008) 092501
    [30] 郭政倫,“以磁控濺鍍法研製鐵鈷鉿基之軟磁薄膜及其微結構與磁性質分析”,國立清華大學材料科學與工程學系碩士論文 (2008).
    [31] K. Ikeda, K. Kobayashi, and M. Fujimoto, J. Appl. Phys. 92 (2002) 5395.
    [32] G. S. D. Beach, A. E. Berkowitz, F. T. Parker, and D. J. Smith, Appl. Phys. Lett. 79 (2001) 224.
    [33] 劉凱欣,“以磁控濺鍍法鍍製鐵鈷鋯氧/二氧化鋯多層軟磁薄膜及其靜磁性質與高頻特性之探討”,國立清華大學材料科學工程學系碩士論文(2009).
    [34] Y. M. Kuo , S. D. Li , J. G. Duh, Mater. Res. Bull. 45 (2010) 1916.
    [35] Y. M. Kuo, C. C. Lee, J. G. Duh, Appl. Surf. Sci. 256 (2010) 6437.
    [36] Y. M. Kuo, C. C. Lee, J. G. Duh, Mater. Lett. 64 (2010) 759.
    [37] H. Jiang, Y. Chen, and G. Lian, IEEE Trans. Magn. 39 (2003) 3559.
    [38] A. Makino, A. Inoue, and T. Masumoto, Mater. Trans. JIM. 36 (1995) 924.
    [39] Y. Hayakawa and A. Makino, Nanostruct. Mater. 6 (1995) 989.
    [40] Y. Hayakawa, A. Makino, H. Fujimori and A. Inoue, J. Appl. Phys. 81 (1997) 3747.
    [41] T. S. Yoon, Y. Li, W. S. Cho, C. O. Kim , J. Magn. Magn. Mater. 237 (2001) 288.
    [42] G. M. Masters, Renewable and Efficient Electric Power Systems, Wiley-IEEE Press (2004) 24.
    [43] V. Korenivski, J. Magn. Magn. Mater. 215-216 (2000) 800.
    [44] N. Saleh and A. H. Quresh, Electron. Lett. 6 (1970) 850.
    [45] R. F. Soohoo, IEEE Trans. Magn. 15 (1979) 1803.
    [46] T. Sato, H. Tomita, A. Sawabe, T. Inoue, T. Mizoguchi, and M. Sahashi, IEEE Trans. Magn. 30 (1994) 217.
    [47] T. Sato, Y. Miura, S. Matsumura, K. Yamasawa, S. Morita, Y. Sasaki, T. Hatanai, and A. Makino, J. Appl. Phys.83 (1998) 6658
    [48] H. Nakazawa, M. Edo, Y. Katayama, M. Gekinozu, S. Sugahara, Z. Hayashi, K. Kuroki, E. Yonezawa, and K. Matsuzaki, IEEE Trans. Magn. 36 (2000) 3518.
    [49] K. H. Kim, D. W. Yoon, J. H. Jeong, J. Kim, S. H. Han, H. J. Kim, J. Magn. Magn. Mater. 239 (2002) 579.
    [50] C. S. Kim, S. Bae, H. J. Kim, S. E. Nam, and H. J. Kim, IEEE Trans. Magn. 37 (2001) 2894.
    [51] K. H. Kim, J. Kim, H. J. Kim, S. H. Han, and H. J. Kim, IEEE Trans. Magn. 38 (2002) 579.
    [52] J. S. Song, B. K. Min, D. Y. Jeong, H. S. Kim ,and J. S. Heo, J. Magn. Magn. Mater. 234 (2001) 494.
    [53] S. G. Kim, E. J. Yun, J. Y. Kim, J. D. Kim, and K. I. Cho, J. Appl. Phys. 90 (2001) 3533.
    [54] R. Meere, T. O’Donnell, H. J. Bergveld, N. Wang, and S. C. O’Mathuna, IEEE T Power Electr., 24 (2009) 2212.
    [55] B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials, 2nd edition, New Jersey, Wiley-IEEE Press (2008) 87.
    [56] J. Goldstein, D. E. Newbury, D. C. Joy, D. C. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. R. Michael, Scanning Electron Microscopy and X-ray Microanalysis, 3rd edition, Springer (2003) 404.
    [57] D. Pain, M. Ledieu, O. Acher, A. L. Adenot, and F. Duverger, J. Appl. Phys. 85 (1999) 5151.
    [58] M. Yamaguchi, O. Acher, Y. Miyazawa, K. I. Arai and M. Ledieu, J. Magn. Magn. Mater. 242 (2002) 970.
    [59] B. D. Cullity, and S.R. Stock, Elements of X-Ray Diffraction, 3rd edition, Prentice Hall (2001) 170.
    [60] A. Makino and Y. Hayakawa, Mater. Sci. Eng. A181/A182 (1994) 1020.
    [61] N. D. Ha, A. T. Le, M. H. Phan, C. O. Kim, H. Lee, Nanotechnology 18 (2007) 155705.
    [62] L. Landau, E. Lifshitz, Phys. Z. Sowjetunion 8 (1935) 153.
    [63] I. T. Iakubov, A. N. Lagarkov, S. A. Maklakov, A. V. Osipov, K. N. Rozanov, I. A. Ryzhikov, N. A. Simonov, S. N. Starostenko, J. Magn. Magn. Mater. 258-259 (2003) 195.
    [64] L. Néel, J. Phys. Radium 17 (1956) 250.
    [65] C. O. Tiller and G. W. Clark, Phys. Rev. 110 (1958) 583.
    [66] A. J. Collins , C. J. Prior, and R. C. J. Hicks, Thin Solid Films 86 (1981) 165.
    [67] X. Liu, G. Zangari, and L. Shen, J. Appl. Phys. 87(2000) 5410.
    [68] I. Tabakovic, V. Inturi, and S. Riemer, J. Electrochem. Soc. 149 (2002) C18.
    [69] J. G. Kim, K. H. Han, S. H. Song, and A. Reilly, Thin Solid Films 440 (2003) 54.
    [70] E. van de Riet and F. Roozeboom, J. Appl. Phys. 81 (1997) 350.
    [71] J. Huijbregtse, F. Roozeboom, J. Sietsma, J. Donkers, T. Kuiper, E. van de Riet, J. Appl. Phys. 83 (1998) 1569.
    [72] J. C. Sohn, D. J. Byun, and S. H. Lim, phys. Stat. sol. (a) 201 (2004) 1946.
    [73] K. Tanigawa, H. Hirano, T. Sato, and N. Tanaka, J. Appl. Phys. 75 (1994) 5788.
    [74] A. R. Hambley, Electrical Engineering: Principles & Applications, 3rd edition, Prentice Hall (2004) 705.
    [75] D. H. Shin, C. S. Kim, J. H. Jeong, S. Bae, S. E. Nam, and H. J. Kim, J. Appl. Phys.87 (2000) 5852.
    [76] J. W. Park and M. G. Allen, IEEE Trans. Magn. 39 (2003) 3184.
    [77] N. Wang, T. O’Donnell, R. Meere, M. F. Rhen, S. Roy, and S. C. O’Mathuna, IEEE Trans. Magn. 44 (2008) 4096.
    [78] S. G. Kim, H. S. Park, J. G. Koo, J. D. Kim, T. M. Rho, Y. H. Lee, B. W. Kim, and J. Y. Kang, Thin Solid Films 517 (2009) 4204 .
    [79] K. Shirakawa, H. Kurata, M. Kasuya, S. Ohnuma, J. Toryu, and K. Murakami, IEEE Transl. J. Magn. Jpn. 8 (1993)169.
    [80] T. Sato, K. Yamasawa, H. Tomita, T. Inoue, and T. Mizoguchi, T IEE Jpn. 121(2001) 84.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE