簡易檢索 / 詳目顯示

研究生: 賴漢昭
Lai, Han-Chao
論文名稱: 新型非揮發性氮化層嵌入式邏輯記憶體之研究
A New Nonvolatile Memory with Self-Aligned Nitride (SAN) Storage in Fully CMOS Compatible Logic Process
指導教授: 林崇榮
Lin, Chrong-Jung
金雅琴
King, Ya-Chin
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 146
中文關鍵詞: 邏輯非揮發性記憶體氮化層嵌入式單次寫入式單包兩位元
外文關鍵詞: Self-Aligned Nitride, OTP, 2-Bits/Cell, SSI, Nitride Storage Node, Logic NVM
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A novel One Time Programming (OTP) cell with nitride-based storage node has been proposed for logic nonvolatile memory applications without any additional masks or process steps for pure CMOS logic process. The fully-logic-compatible cell has been successfully demonstrated in 45nm-node technology with a cell size of 0.064um2, which achieves the smallest cell size, especially with 2- bits per cell characteristics. This cell adapting source side injection programming scheme has a wide on/off window and a superior writing efficiency. Highly reliable data retention characteristics also have been demonstrated in nitride storage node. Since the storage mechanism decouples from logic transistor gate oxide thickness, the scalability of the new cell is very promising along with advanced CMOS technology with high feasibility and solution for embedded NVM in advance logic circuits.


    Abstract i Acknowledgments ii Contents iii Figure Captions vi Table Captions x Chapter 1 Introduction 1 1-1.Introduction 1 1-2. Typical properties of logic nonvolatile memory 4 1-2-1. Basic Operation Principle 4 1-2-2. Basic Programming Mechanisms 4 1-2-2-1. Channel Hot-Electron (CHE) Injection 5 1-2-2-2. Channel Initiated Secondary Electron (CHISEL) injection 6 1-2-2-3. Band-to-Band Tunneling Induced Hot-Hole (BBHH) Injection 7 1-2-2-4. Fowler-Nordheim Tunneling 8 1-2-2-5. Source-Side Injection 9 1-3. Goal and Organization of Dissertation 12 Chapter 2 Logic-Compatible Nonvolatile Memory 20 2-1. Introduction 20 2-2. Technology Benchmark of Logic-Compatible NVM 22 2-2-1. PMOS CHE: NeoFlash (Single Poly EPROM) 22 2-2-2. Oxide Breakdown: 3-Dimentional OTP 23 2-2-3. Oxide Breakdown: XPM 24 2-2-4. Electro-Migration: Electrical Fuse 26 2-3. Summary 28 Chapter 3 Operation Mechanisms of SAN Cell 34 3-1. SAN Cell Structure 35 3-1-1. TEM images of SAN Cell 35 3-2. Key Process Steps for SAN Cell 37 3-2-1. Gate Spacing Design 39 3-3. Cell Operation Principles 41 3-3-1. Programming Mechanism 41 3-3-2. Hot Carrier Injection Point, Xc 43 3-3-3. Simulations of Program Operation 44 3-3-3-1. Electric Field Distribution 44 3-3-3-2. Hot Carrier Generation Rate 45 3-3-4. Read Operation 46 3-3-4-1. Verification of trapped electrons location 48 3-3-5. Equivalent-circuit Verification 51 3-4. Program Characterization 55 3-4-1. Polysilicon Gate Spacing Effect 55 3-4-2. PG Voltage Optimization 57 3-4-3. SL Voltage Optimization 58 3-4-4. Programming Efficiency 59 3-5. Read Characterization 61 3-5-1.Read Voltage Optimization 61 3-6. UV Erase 63 3-7. NOR-Type Array 65 3-8. Reliability 67 3-8-1. Data retention 67 3-8-2. Program disturbance 68 3-8-3. Read disturbance 69 3-9. Summary 70 Chapter 4 Two Bits/Cell with 45 nm Logic Technology 89 4-1. 45nm Cell Structure and Layout 89 4-2. Programming Operations for 2 Bits/Cell 91 4-2-1. Programming Time and PG Voltage Effects 92 4-2-2. Programming Optimization 93 4-2-3. SG Voltage Effect 95 4-2-4. Polysilicon Gate Space Effect 96 4-2-5. Programming Flow of 2 Bits/Cell 97 4-3. Read Operation of 2 Bits/Cell 99 4-3-1. I-V Curves of Read_L and Read_R 99 4-3-2. Read Operation Flow 101 4-3-3. Read Voltage Optimization 102 4-4. Erase Characteristics 104 4-5. Reliability Characteristics 105 4-5-1. Array Programming 105 4-5-2. Program Disturbance 105 4-5-3. Read Disturb 106 4-6. Summary 108 Chapter 5 SAN Memory Shrinkage and Discussions 122 5-1. Introduction 122 5-2. Design and Structure Comparison 124 5-3. Operations Characteristics Comparison 126 5-4. Operation Windows Comparison 127 5-5. Summary 129 Chapter 6 Conclusion 136 6-1. Summary 136 6-2. Recommendation for Future Work 138 References 140 Publication List 145

    [1.1] Stan Augarten, “ State of the Art, ” Published by Ticknor & Fields, New Haven and New York, 1983
    [1.2] D. Kahng and S. M. Sze, "A floating gate and its application to memory devices," Bell Syst. Tech. J., vol. 46, p. 1288, 1967.
    [1.3] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash Memory Cells-An Overview,” Proc. IEEE, vol. 85, no. 8, pp. 1248-1271, 1997.
    [1.4] S. Tam, P. Ko, and C. Hu, “Lucky-electron model of channel hot-electron injection in MOSFET's,” IEEE Trans. Electron Dev., vol. ED-31, Sept. 1984, p. 1116-1125.
    [1.5] T. H. Ning, C. M. Osburn, and H. N. Yu, “Emission probability of hot electrons from silicon into silicon dioxide,” J. Appl. Phys., Vol. 48, pp. 286-293, 1977.
    [1.6] Y. Nakagume, E. Takeda, H. Kume, and S. Asai, “New observation of hot-carrier injection phenomena,” Jpn. J. Appl.Phys., vol. 22, p. 99, 1982.
    [1.7] S. Mahapatra, S. Shukuri, and J. Bude, “CHISEL Flash EEPROM-Part I : Performanceand Scaling,” IEEE Trans. Electron Dev., vol. 49, no. 7, pp. 1296-1301, 2002.
    [1.8] D. Esseni, L. Selmi, A. Ghetti, and E. Sangiorgi, “The scaling properties of CHISEL and CHE injection efficiency in MOSFETs and flash memory cells,” in Tech. Dig. Int’l Electron Dev. Meet., 1999, p. 275-278
    [1.9] J. D. Bude et al, “Secondary electron flash-A high performance low power flash technology for 0.35 μm and below,” in Tech. Dig. Int’l Electron Dev. Meet., 1997, p. 279-282
    [1.10] Y. Taur and T. H. Ning, “ Fundamentals of Modern VLSI Devices, ” Published by CambridgeUniv. Press, New York, 1998
    [1.11] M. Lenzlinger and E. H. Snow, “Fowler-Nordheim Tunneling into Thermally Grown SiO2,” J. Appl. Phys., Vol. 40, No. 1, pp. 278-283, Jan. 1969
    [1.12] Van Houdt, L. Haspeslagh, D. Wellekens, L. Deferm, G. Groeseneken, and H. E. Maes, “HIMOS—a high efficiency Flash EEPROM cell for embedded memory applications,” IEEE Trans. Elect. Dev., vol. ED-40, p. 2255, 1993.
    [1.13] R. Hoffmann, C. Werner, W. Weber, and G. Dorda, "Hot-electron and hole emission effects in short n-channel MOSFET's," IEEE Trans. Elect. Dev., vol. ED-32, p. 691, 1985.
    [1.14] J. Van Houdt, P. Heremans, L. Deferm, G. Groeseneken, and H. E. Maes, "Analysis of the enhanced hot-electron injection in split-gate transistors useful for EEPROM applications," IEEE Trans. Elect. Dev., vol. ED-39, p. 1150, 1992.
    [1.15] A. Wu, T. Chan, P. Ko, and C. Hu, "A novel high-speed, 5-V programming EPROM structure with source-side injection," IEEE IEDM Tech. Dig., p. 584, 1986.
    [2.1] Ching-Sung Yang, Shih-Jye Shen ,and Ching-Hsiang Hsu ,"Single Poly UV-Erasable Programmable Read Only Memory, "US Patent # US 6,882,574 B2,Apr.19,2005.”
    [2.2] Robert S.C. Wang, Rick S.J. Shen, Charles C.H. Hsu,” Neobit-high reliable Logic Non-Volatile Memory (NVM),” IPFA, 2004, pp. 111 – 114.
    [2.3] F. Li, X. Yang, A. T. Meeks, J.T. Shearer, and K.Y. Le “Evaluation of SiO2 antifuse in a 3D-OTP memory, ”IEEE Device and Material Reliability, vol.4, pp. 416-421, Sept. 2004.
    [2.4] S. B. Herner, ”Vertical p–i–n Polysilicon Diode With Antifuse for Stackable Field-Programmable ROM,” IEEE ELECTRON DEVICE LETTERS, VOL. 25, NO. 5, MAY 2004.
    [2.5] T J. Peng, G .Rosendale , M . Fliesler , D. Fong , J. Wang ,C. Ng ,Zs Liu ,Harry Luan," A Novel Embedded OTP NVM Using Standard Foundry CMOS Logic Technology", IEEE 2006.
    [2.6] Peng, Jack et al., “ Programming methods and circuits for semiconductor memory cell and memory array using a breakdown phenomena in an ultrathin dielectric,” US Patent# US6,671,040 B2, Dec.30,2003.
    [2.7] Johannes Fellner, “A one time programming cell using more than two resistance levels of a PolyFuse. ”IEEE Custom Integrate Circuit, pp.263-266, Sept. 2005.
    [3.1] Han-Chao Lai, Kai-Yuan Cheng, Ya-Chin King, and Chrong-Jung Lin,” A 0.26-um2 U-shape Nitride Based Programming Cell on Pure 90nm CMOS Technology, ” IEEE Electron Device Lett., Vol. 28, pp. 837-839, Sept. 2007
    [3.2] Han-Chao Lai, Chia-En Huang, Ya-Chin King, and Chrong-Jung Lin,” Novel Self-Aligned Nitride One Time Programming with 2-bit/Cell Based on Pure 90-nm Complementary Metal–Oxide–Semiconductor Logic Technology,”, JJAP, pp. 8369-8374, 2008.
    [3.3] Johannes Fellner, “A One Time Programming Cell Using More than Two Resistance Levels of a PolyFuse. ”IEEE Custom Integrate Circuit, pp.263-266, Sept. 2005
    [3.4] Hiroshi Ito, Toshimasa Namekawa,” Pure CMOS One-time Programmable Memory Using Gate-Ox Anti-fuse, ”IEEE Custom Integrate Circuits Conference, 2004, pp.469 – 472, Oct. 2004
    [3.5] Robert S.C. Wang, Rick S.J. Shen, Charles C.H. Hsu,” Neobit□ -High Reliable Logic Non-Volatile Memory (NVM),” IPFA, 2004, pp. 111 – 114.
    [3.6] A. Wu, T. Chan, P. Ko, and C. Hu, "A novel high-speed, 5-V programming EPROM structure with source-side injection," IEEE IEDM Tech. Dig., p. 584, 1986.
    [3.7] Van Houdt, L. Haspeslagh, D. Wellekens, L. Deferm, G. Groeseneken, and H. E. Maes, “HIMOS—a high efficiency Flash EEPROM cell for embedded memory applications,” IEEE Trans. Elect. Dev., vol. ED-40, p. 2255, 1993.
    [5.1] B.Yu, “15nm Gate Length Planar CMOS Transistor”, pp.937-939, IEDM, 2001.
    [5.2] S.Pan, “Nonvolatile Memory Challenges toward Gigabit and Nano-scale Era and a Nano-scale Flash Cell: PHINES”, Extended abstracts of the 2002 International Conference on Solid State Devices and Materials, pp.152-153, 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE