研究生: |
廖詩瑀 Liao, Shih Yu |
---|---|
論文名稱: |
真空施壓下鈦箔與鎳箔熱反應研究 Titanium foil and Nickel foil Thermal response under vacuum pressure |
指導教授: |
胡塵滌
Hu,Chen Ti |
口試委員: |
吳錫侃
楊聰仁 呂正傑 李三保 胡塵滌 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | 鈦鎳形狀記憶合金 、擴散熱處理 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為真空中施壓於純鈦與純鎳薄片再進行熱處理,以不同熱處理條件研究純鈦與純鎳反應過程與形成TiNi記憶合金之可行性。
第一部份以製程溫度T=1348K、1355K、1361K、1373K、1393K進行持溫5分鐘真空熱處理,以OM及SEM觀察各試片於不同溫度熱處理後鈦與鎳擴散情形以及試片顯微結構變化與成分分析,發現除了最高溫T=1393K處理試片其他試片均為層狀顯微結構,各層的成份分別為純Ni、TiNi3、TiNi、富Ti區,且以製程溫度T=1373K之試片所形成的TiNi相區體積比率為最高。
第二部份以TiNi相區比率最多的[T=1373K/5min]試片為基礎,改變持溫時間分別為20分鐘及2分鐘,觀察持溫時間增加或縮短對顯微結構變化與成分的影響,其中[T=1373K/20min]試片層狀結構之界面出現裂縫,而[T=1373K/2min]試片所形成TiNi相區體積比率則稍低於[T=1373K/5min]試片中體積比。
形狀記憶效應(SME)方面,量測各種試片在重複改變溫度時之曲度形狀變化,由曲度變化求取形狀記憶效果,試片[T=1373K/2min]和試片[T=1373K/5min]的形狀記憶效果較佳,對應到此製程條件下鈦與鎳箔片擴散形成等原子比TiNi相區之體積比率為較高。
(1) L. Delaey, R. Krishnan, H. Tas, and H. Warlimont., “Thermoelasticity, pseudoelasticity and the memory effects associated with martensitic transformations. Part 1 Structural and microstructural changes associated with the transformations,” Journal of Materials Science (1974), vol.9, pp. 1521-1535
(2) R. Krishnan, L. Delaey, H. Tas, and H. Warlimont,“Thermoplasticity, pseudoelasticity and the memory effects associated with martensitic transformations. Part 2 Macroscopic Mechanical-Behavior,” Journal of Materials Science (1974), vol.9, pp. 1536-1544.
(3) H. Warlimont, L. Delaey, R. Krishnan, and H. Tas,“Thermoelasticity, pseudoelasticity and the memory effects associated with martensitic transformations. Part 3 Thermodynamics and Kinetics,” Journal of Materials Science (1974), vol.9, pp. 1545-1555.
(4) 賴耿陽,“形狀記憶合金” 復漢出版社, Vol. 1, pp. 1-44, p.68 (1999)
(5) P. Thamburaja, H. Pan, F.S. Chau., “Martensitic reorientation and shape-memory effect in initially textured polycrystalline Ti–Ni sheet.” Acta Materialia Vol.53, (2005) pp. 3821–3831
(6) J. Perkins and R.O. Sponholz, “Stress-Induced Martensitic Transformation Cycling and Two-Way Shape Memory Training in Cu-Zn-AI Alloys” Metallurgical Transactions (1984), vol.15, pp. 313-321
(7) D. Dumme and C. Wayman,“Effect of Austenite Ordering on Martensite Transformation in Fe-Pd Alloys Near Composition Fe3. 2. Crystallography and General Features,” Metallurgical Transactions (1973), vol.4, pp. 147-152.
(8) T. Schroeder and C. Wayman,“The two-way shape memory effect and other training phenomena in Cu- Zn single-crystals,” Scripta Metallurgica (1977), vol.11, pp. 225-230.
(9) M. Nishida, T. Honma, “All-round shape memory effect in Ni-rich TiNi alloys generated by constrained aging.” Scripta Metallurgica (1984), vol.18, pp. 1293–1298
(10) Nishida, M. and T. Honma, “Effect of Heat-Treatment on the All-Round Shape Memory Effect in Ti-51at Percent Ni.” Scripta Metallurgica,(1984), Vol.18 No.11, pp. 1299-1302
(11) Lahoz, R., L. Gracia-Villa, and J.A. Puertolas, “Training of the two-way shape memory effect by bending in NiTi alloys.” Journal of Engineering Materials and Technology-Transactions of the Asme, (2002), Vol.124, No.4, pp. 397-401.
(12) Wayman, C.M., Proc. ICOMAT-89,Sydney, Australia, (1989), p. 519
(13) Otsuka, K., in: Proc. Int’l. Conf. on Solid to Solid Phase Transformations, TMS-AIME Pittsburgh, PA. (USA), (1981), p. 1276.
(14) Otsuka, K. and K. Shimizu, “Pseudoelasticity”, Metals Forum, (1981). Vol.4, No.3, pp. 142-152.
(15) Otsuka, K. and a.C.M. Wayman, “Reviews on the Deformation Behavior of Materials”, (P. Feltham ed.), Israel, (1977), p. 81.
(16) Honma, T., Proc. Int. Conf. on Martensitic Transformations (ICOMAT-86), (1987) p. 709.
(17) K. Otsuka and K.Shimizu, International Metals Reviews.,Vol.31, (1986), p. 93
(18) Vol.3 “Alloy Phase Diagrams” ASM Handbook, ASM international.
(19) K. Otsuka, C. Wayman, “Shape Memory Materials”, Cambridge University Press, Cambridge, (1998), p. 49.
(20) C.M. Jackson, H.J. Wanger, and R.J. Wasilewski, “55-NITIONL Report”. NASA-SP5110, (1972).
(21) K. Ostuka, S. Sawamura, and a.K. Shimizu, Phys. Stat. Sol., 5, (1971), p. 457.
(22) Lahoz, R., L. Gracia-Villa, and J.A. Puertolas, “Training of the two-way shape memory effect by bending in NiTi alloys”, Journal of Engineering Materials and Technology-Transactions of the Asme, (2002).Vol.124, No.4, pp. 397-401.
(23) Liu, Y., et al., “Effect of texture orientation on the martensite deformation of NiTi shape memory alloy sheet.”, Acta materialia, (1999). Vol.47, No.2, pp. 645-660.
(24) Liu, Y.O. and P.G. Mccormick, “Factors Influencing the Development of 2-Way Shape Memory in NiTi.”, Acta Metallurgica Et Materialia, (1990). Vol.38, No.7, pp. 1321-1326.
(25) Wang, Z.G., et al., “Design of TiNi alloy two-way shape memory coil extension spring.”, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, (2003). Vol.345,(1-2), pp. 249-254.
(26) Prader, P. and A.C. Kneissl, “Deformation behaviour and two-way shape memory effect of NiTi alloys.”, Zeitschrift Fur Metallkunde, (1997). Vol.88, No.5, pp. 410-415.
(27) Scherngell, H. and A.C. Kneissl, Generation, development and degradation of the intrinsic two-way shape memory effect in different alloy systems. Acta Materialia, 2002. Vol.50, No.2, pp. 327-341.
(28) Scherngell, H. and A.C. Kneissl, “Influence of the microstructure on the stability of the intrinsic two-way shape memory effect.”, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, (1999). Vol.273, pp. 400-403.
(29) Hebda, D.A. and S.R. White, “Effect of training conditions and extended thermal cycling on nitinol two-way shape memory behavior.”, Smart Materials & Structures, (1995). Vol.4, No.4, pp. 298-304.
(30) Perkins, J. and R.O. Sponholz, “Stress-Induced Martensitic-Transformation Cycling and 2-Way Shape Memory Training in Cu-Zn-Al Alloys.”, Metallurgical Transactions a-Physical Metallurgy and Materials Science, (1984). Vol.15, No.2, pp. 313-321.
(31) Schroeder, T.A. and C.M. Wayman, “2-Way Shape Memory Effect and Other Training Phenomena in Cu-Zn Single-Crystals.”, Scripta Metallurgica, (1977). Vol.11, No.3, pp. 225-230.
(32) M.M. Reyhani, P.G.M., Proc. ICO-MAT-86, Japan Inst. Metals (1986), p. 896.
(33) Hong-Sheng Ding, Jung-Moo Lee,, Bup-Ro Lee, Suk-Bong Kang, Tae-Hyun Nam, “Processing and microstructure of TiNi SMA strips prepared by cold roll-bonding and annealing of multilayer”, Materials Science and Engineering A. vol. 408 (2005), pp. 182–189
(34) 馬濟民,鈦鑄錠和鍛造,冶金工業出版社 ,2012。
(35) Pavel Novák, Lucie Mejzlíková, Alena Michalcová, Jaroslav Capek, Premysl Beran, Dalibor Vojtech, “Effect of SHS conditions on microstructure of NiTi shape memory alloy”, Intermetallics, Vol.42, (2013), pp. 85-91
(36) Pavel Novak, Petr Pokorný, Vladimír Vojtech, Anna Knaislova, Andrea Skolakova, Jaroslav Capek, Miroslav Karlík, Jaromír Kopecek, “Formation of NiTi intermetallics during reactive sintering at 500-650°C”, Materials Chemistry and Physics, Vol.155, (2015), pp.113-121
(37) T. C. Li, Y. B. Qui, J. T. Liu, F. T. Wang, M. Zhu, D. Z. Yang, J. Material Science. vol. 11, (1992), p. 845
(38) 張小明, 殷為宏, 郭繼紅, 粉末冶金技術,13(2), (1995), p. 121
(39) M. Bram, A. Ahmad-Khanlou, A. Heckmann, B. Fuchs, H.P. Buchkremer, D. Sto¨ver, “Powder metallurgical fabrication processes for NiTi shape memory alloy parts”, Materials Science and Engineering A, vol. 337, (2002), pp. 254-263
(40) Zuhair A. Munir, Umberto Anselmi-Tamburini,” Self-propagating exothermic reactions:The synthesis of high-temperature materials by combustion” Material Science Report., Vol.3, (1989), pp. 277-365
(41) Hitoshi Matsumoto, Ken-Ichi Kondo, Shoso Dohi and Akira sawaoka, “Shock compaction of NiTi alloy powder”, Journal of Material Science, Vol.22, (1987), pp.581-586
(42) Binh-Yun LI, Li-Jian Rong, Yi-Yi LI, and V.E. Gjunter, “An Investigation of the Synthesis of Ti-50 At. Pct Ni Alloys through Combustion Synthesis and Conventional Powder Sintering”, Metallurgical and Materials Transactions A, Vol.31, (1998), pp. 1867-1871
(43) V. I. Itin, V. E. Gjunter, S. A. Shabalovskays, R. L. C. Sachdeva, “Mechanical Properties and Shape Memory of Porous Nitinol”, Materials Characterization, Vol. 32, (1994), pp. 179–187
(44) Sakae Saito, Takashi Wachi and Shuji Hanada,” A new fabrication process of TiNi shape memory wire” Material Science Engineering A, Vol.161, (1993), pp.91-96
(45) W. C. Chiou and C. T. Hu, “A simple method for producing fully dense Ni3Al by reactive sintering”, Scripta Metallurgica et Materialia, Vol.31, No.9, (1994), pp. 1215-1220
(46) D. Tomus, K. Tsuchiya, M. Inuzuka, M. Sasaki, D. Imai, T. Ohmori, M. Umemoto, “Fabrication of shape memory TiNi foils via Ti/Ni ultrafine laminates”, Scripta Materialia, Vol. 48, (2003), pp. 489–494
(47) N. Igata, N. Urahashi, M. Sasaki, Y. Kogo, “Internal friction of Ni–Ti and Ni–Ti–Cu plates produced by lamination process”, Materials Science and Engineering A, (2004), Vol.379, pp. 560–563
(48) Ling, H.C. and R. Kaplow, “Phase-Transitions and Shape Memory in NiTi”., Metallurgical Transactions a-Physical Metallurgy and Materials Science, (1980). Vol.11, pp. 77-83.
(49) M. Matsumoto and T. Honma, Proc. First JIM Inst. Symp. on New Aspects of Martensitic Transformation, Japan Institute of Metals, Sendai (1976). p. 199.
(50) V.N. Khachin, et al., Phys. Met. Metallogr. (Engl. Trans.), Vol. 46, (1978), p. 49.
(51) Sandrock, G.D., A.J. Perkins, and R.F. Hehemann, “Premartensitic Instability in near-Equiatomic TiNi”, Metallurgical Transactions, (1971), Vol.2, p. 2769
(52) Wang, F.E., et al., “Irreversible Critical Range in TiNi Transition”, Journal of Applied Physics, (1968), Vol.39, p. 2166
(53) Melton, K.N. and O. Mercier, “Fatigue of Niti Thermoelastic Martensites”, Acta Metallurgica, Vol.27, (1979), pp. 137-144.
(54) Wang, F.E., W.J. Buehler, and S.J. Pickart, “Crystal Structure and a Unique Martensitic Transition of TiNi”, Journal of Applied Physics, Vol.36, No.10, (1965), p. 3232
(55) Ling, H.C. and R. Kaplow, “Stress-Induced Shape Changes and Shape Memory in the R and Martensite Transformations in Equiatomic NiTi”, Metallurgical Transactions a-Physical Metallurgy and Materials Science, Vol.12, No.12, (1981), pp. 2101-2111.
(56) Hwang, C., et al., “Transformation behaviour of a Ti50Ni47Fe3 alloy I. Premartensitic phenomena and the incommensurate phase”. Philosophical Magazine A, Vol.47, (1983), pp. 9-30.
(57) Sato, M., A. Ishida, and S. Miyazaki, “Two-way shape memory effect of sputter-deposited thin films of Ti 51.3 at% Ni”, Thin Solid Films, Vol.315,No.1-2, (1998). pp. 305-309.
(58) Redeker, T., et al., “Organometallic chemical vapor deposition (OMCVD) of thin films of titanium/nickel alloys (TiNi)”, Abstracts of Papers of the American Chemical Society, Vol.216, (1998), p.188
(59) Hanlon, J.E., S.R. Butler, and Wasilews.Rj, “Effect of Martensitic Transformation on Electrical and Magnetic Properties of NiTi”, Transactions of the Metallurgical Society of Aime, (1967), Vol.239, No.9, p.1323
(60) Salamon, M.B., M.E. Meichle, and C.M. Wayman, “Premartensitic Phases of Ti50Ni47Fe3”, Physical Review B, Vol. 31, No.11, (1985), pp. 7306-7315.
(61) Saburi, T., T. Tatsumi, and S. Nenno, “Effects of Heat-Treatment on Mechanical-Behavior of Ti-Ni Alloys”, Journal De Physique, (1982).Vol.43, pp. 261-266.
(62) Airoldi, G., G. Bellini, and C. Difrancesco, “Transformation Cycling in Niti Alloys”, Journal of Physics F-Metal Physics, (1984), Vol.14, No.8, pp.1983-1987.
(63) Tadaki, T., Y. Nakata, and K. Shimizu, “Thermal Cycling Effects in an Aged Ni-Rich Ti-Ni Shape Memory Alloy”, Transactions of the Japan Institute of Metals, (1987), Vol.28, No.11, pp. 883-890.
(64) Miyazaki, S., Y. Igo, and K. Otsuka, “Effect of Thermal Cycling on the Transformation Temperatures of Ti-Ni Alloys”, Acta Metallurgica, (1986), Vol.34, No.10, pp. 2045-2051.
(65) Dautovic.Dp, et al., “Calorimetric Study of a Diffusionless Phase Transition in TiNi”, Journal of Applied Physics, (1966), Vol.37, No.6, p. 2513
(66) M. Igharo, J. V. Wood,” Properties of Equiatomic TiNi Alloy Produced by Rapid Solidification”, Materials Science and Engineering, (1988), Vol.98, pp. 443-447
(67) M. Igharo and J. V. Wood, ”Compaction and Sintering Phenomena in Titanium—Nickel Shape Memory Alloys” Powder Metallurgy, Vol.28, No.3 (1985), p.131
(68) Handbook of Chemistry and Physics 58th edition
(69) Hideo Nakajima, Sadamichi Maekawa, Yoshihira Aoki and Masahiro Koiwa, “Diffusion of Nickel in Titanium in a Magnetic Field” Transactions of the Japan Institute of Metals, Vol. 26, No. 1 (1985), pp.1-6
(70) Handbook of Chemistry and Physics 58th edition
(71) Hideo Nakajima, Sadamichi Maekawa, Yoshihira Aoki and Masahiro Koiwa, “Diffusion of Nickel in Titanium in a Magnetic Field” Transactions of the Japan Institute of Metals, Vol. 26, No. 1 (1985), pp.1 to 6
(72) H. C. Lin, S. K. Wu and J. C. Lin, The martensitic transformation in Ti-rich TiNi shape memory alloys “, Materials Chemistry and Physics, Vol.37, (1994), pp. 184-190
(73) A. Ahadi and E. Rezaei, “Microstructure and Phase Transformation Behavior of a Stress-Assisted Heat-Treated Ti-Rich NiTi Shape Memory Alloy”, ASM International, Vol.21, (2012), pp. 1806–1812
(74) 林秀芬, “多孔性TiNi形狀記憶合金”, 國立清華大學碩士論文, (2002), 附錄
(75) http://www.techmaxasia.com/articles/detail/1196063383 (TechMax Technical Co., Ltd., Nov. 2003).
(76) http://www.microimage.com.cn/uploadfile/xwjs/uploadfile/200812/20081231085154610.pdf
(77) R. A. SWALIN and A. MARTIN, Trans. AIME Vol.206, (1956), p.567.
(78) S. B. JUNG, T. YAMANE, Y. MINAMINO, K. HIRAO, H. ARAKI, S. SAJI, “Interdiffusion and its size effect in nickel solid solutions of Ni-Co, Ni-Cr and Ni-Ti systems” , Journal of Materials Science Letters, Vol.11, (1992), pp. 1333-1337
(79) Tokujiro Yamamoto, Hiroyuki Kato, Yoshihiro Murakami, Hisamichi Kimura, Akihisa Inoue, “Martensitic transformation and microstructure of Ti-rich Ti–Ni gas-atomized powders”, Acta Materialia, Vol.56, (2008), pp. 5927–5937
(80) Chung, C.Y., C.L. Chu, and S.D. Wang, “Porous TiNi shape memory alloy with high strength fabricated by self-propagating high-temperature synthesis.”, Materials Letters, Vol. 58, No.11, (2004), pp. 1683-1686.
(81) Urbina, C., et al., “Quantitative XRD analysis of the evolution of the TiNi phase transformation behaviour in relation to thermal treatments.”, Intermetallics, Vol.18, No.8, pp. 1632-1641.
(82) H.F. Lbpez, A. Salinas-Rodriguez, and J.L. Rodriguez-Galicia, “Microstructural aspects of precipitation and martensitic transformation in a Ti-rich Ni-Ti alloy”, Scripta Materialia, Vol.34, No.4, pp.659-664, (1996)
(83) Hyo-jung Moon, Su-jin Chun, Yinong Liu, Hong Yang, Yeon-wook Kim, Tae-hyun Nam, “Effect of alloy composition on the B2–R transformation in rapidly solidified Ti–Ni alloys”, Journal of Alloys and Compounds, Vol.577, Suppl.1, (2013), pp. S259–S264
(84) Shuilin Wu, C.Y. Chung, Xiangmei Liu, J.P.Y. Ho,C.L. Chu,Y.L. Chan, K.W.K. Yeung, W.W. Lu, K.M.C. Cheung, K.D.K. Luk, “Pore formation mechanism and characterization of porous NiTi shape memory alloys synthesized by capsule-free hot isostatic pressing”, Acta Materialia, Vol. 55, (2007), pp. 3437–3451
(85) Gang Chen, Klaus-Dieter Liss, Peng Cao, “In situ observation and neutron diffraction of NiTi powder sintering”, Acta Materialia, Vol. 67, (2014), pp. 32–44