簡易檢索 / 詳目顯示

研究生: 朱哲毅
Che-Yi Chu
論文名稱: 結晶-無定形雙團鏈式共聚物摻合體之特殊結晶行為研究
Morphology and Crystallization Behavior of the Binary Blend of Crystalline-Amorphous Diblock Copolymers
指導教授: 陳信龍
Hsin-Lung Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 61
中文關鍵詞: 摻合體共結晶
外文關鍵詞: SEO, SLLA, blends, co-crystallization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無(僅英文摘要)


    Recently the co-crystallization behavior in the binary blend of PEO-b-PB with different molecular weights has been studied ( Huang, Y.-Y.; Nandan, B.; Chen, H.-L.; Liao, C.-S.; Jeng, U.-S. Macromolecules 2004, 37, 8175. ). The co-crystallization observed represents a scenario where a kinetically driven process found in homopolymer crystallization may turn into a thermodynamically controlled process in the crystalline-amorphous systems. It will be of interest to extend this concept to explore the possibility of co-crystallizing two chemically different blocks (C and D) in the binary blends of A-b-C and A-b-D. The diblock components chosen should bear identical amorphous block to enhance the miscibility of the two copolymers.

    Previous studies of the binary blend of PEO and PLLA70-75 homopolymers revealed that these two polymers were miscible in the melt state, but they did not co-crystallize. Furthermore, the previous studies on the binary blends of a short symmetric diblock copolymer and a long symmetric or slightly asymmetric diblock copolymer indicted that the short diblock could act as the cosurfactant for the long diblock copolymers. Consequently, we chose a symmetric PS-b-PEO (SEO) and a symmetric PS-b-PLLA (SLLA) to prepare the blends in which the two diblocks may mix intimately by such a cosurfactant effect. We then proceed to explore if the two chemically different crystalline blocks can co-crystallize. If they can not co-crystallize, then it will be of interest to explore the crystallization behavior of these two crystallizable blocks under the influences of intimate mixing and localization of the junction points at the interface. Such constraints may drastically impact the crystallization process. The PEO/PLLA mixture studied here may hence be considered as a spatially confined blend of polymer brushes.

    Our results on the melt morphology of SEO/SLLA blends indicated that the PS blocks from these two copolymers mixed intimately in the PS lamellar microdomains in the melt. Furthermore, PLLA and PEO also formed a miscible mixture in the corresponding microdomains. Due to the intimate mixing and the restricted mobility of the junction points from the two copolymers, the crystallization behavior of PLLA was significantly perturbed compared with that of the corresponding homopolymer blends. In the SLLA-rich blends, a new entity exhibiting a melting point of ca. 100℃ was found to develop irrespective of the crystallization condition. This new species coexisted with the crystalline phases of PEO and PLLA, and was attributed to the crystallites formed by the co-crystallization of PEO and PLLA under highly restricted conditions.

    Abstract Ⅰ Acknowledgement Ⅲ Table of Contents Ⅴ List of Tables Ⅶ List of Figures Ⅷ Chapter 1. Literature Review of Block Copolymer Blends 1.1 Introduction 1 1.2 Amorphous-Amorphous Diblock Copolymers 2 1.3 Crystalline-Amorphous Diblock Copolymers 8 1.4 Cosurfactant Effects on Morphology Control in Binary Blends of Block Copolymers 10 1.5 Crystallization Behavior in Binary Blends of Crystalline-Amorphous Diblock Copolymers 18 1.6 Phase Behavior in Binary Blend of Crystalline Homopolymers PEO/ PLLA 21 1.7 Motivations and Objectives of the Present Research 24 Chapter 2. Experimental Section 2.1 Polymers and Solvent 26 2.2 Sample Preparation 27 2.3 In-house SAXS Measurement 28 2.4 WXRD Measurement 28 2.5 Synchrotron X-ray Measurement 28 2.6 The DSC Measurement 29 2.7 The Large Amplitude Oscillatory Shear, LAOS 29 Chapter 3. Results and Discussion 3.1 Melt Morphology 30 3.2 Morphology in the Crystalline State 34 3.3 Crystallization Behavior 37 3.4 The Nature of“New Species”Studied by DSC 43 3.4.1 DSC Study of the Crystallization Behavior of the Blends of PEO and PLLA Homopolymers 43 3.4.2 DSC Study of the Binary Blends of SEO and SLLA 45 3.5 Orientation of PLLA Crystallites in the Lamellar Microdomains 52 Chapter 4. Conclusions 58 References 59

    1. Stupp, S. I.; Lebonheur V.; Walker K.; Li L. S.; Huggins
    K. E.; Keser M., Amstutz A. Science, 1997, 276, 384.
    2. Hamley, I. W. The Physics of Block Copolymer, Oxford,
    New York, 2002.
    3. Ikkala, O.; Brinke, G. Science, 2002, 295, 2407.
    4. Inoue, T.; Soen, T.; Hashimoto, T.; Kawai, H.
    Macromolecules 1970, 3, 87.
    5. Leibler, L.; Pincus, A. Macromolecules 1984, 17, 2922.
    6. Hashimoto, T.; Koizumi, S.; Hasegawa, H.; Izumitani, T.;
    Hyde, S. T. Macromolecules 1992, 25, 1433.
    7. Han, C. D.; Beak, D. M.; Kim, J.; Kimishima, K.;
    Hashimoto, T. Macromolecules 1992, 25, 3052.
    8. Weidisch, R.; Ensslen, M.; Michler, G. H.; Fischer, H.
    Macromolecules 1999, 32, 5375.
    9. Discher, B. M.; Won, Y. Y.; Ege, D. S.; Lee, J. C-M.;
    Bates, F. S.; Discher, D. E.; Hammer, D. A. Science
    1999, 284, 1143.
    10. Leibler, L. Macromolecules 1980, 13, 1602.
    11. Meier, D. J. J. Polym. Sci. part C 1969, 26, 81.
    12. Helfand, E. Macromolecules 1975, 8, 552.
    13. Helfand, E.; Wasserman, Z. R. Macromolecules 1976, 9,
    879.
    14. Helfand, E.; Wasserman, Z. R. Macromolecules 1980, 13,
    994.
    15. Helfand, E.; Wasserman, Z. R. Macromolecules 1978, 11,
    960.
    16. Leiblerm, L. Macromolecules 1980, 13, 1602.
    17. Matsen, M. W.; Schick, M. Physical Review Letters,
    1994, 72, 2660.
    18. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29,
    1091.
    19. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29,
    7641.
    20. Khandpur, A. K.; Farster, S.; Bates, F. S.
    Macromolecules 1995, 28, 8796.
    21. Cohen, R. E.; Cheng, P. L.; Douzinas, K. C.; Kofinas,
    P.; Berney, C. V. Macromolecules 1990, 23, 324.
    22. Rangarajan, P.; Register, R. A.; Fetters, L. J.
    Macromolecules 1993, 26, 4640.
    23. Hamley, I. W.; Fairclough, J. P. A.; Terrill, N. J.;
    Ryan, A. J.; Lipic, P. M.; Bates, F. S.; Towns-Andrews,
    E. Macromolecules 1996, 29, 8835.
    24. Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, Q.;
    Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.;
    Lotz, B. J. Am. Chem. Soc. 2000, 122, 5957.
    25. Huang, P.; Zhu, L.; Cheng, S. Z. D.; Ge, Q.; Quirk, R.
    P.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Liu, L.;
    Yeh, F. Macromolecules 2001, 34, 6649.
    26. Zhu, L.; Huang, P.; Chen, W. Y.; Ge, Q.; Quirk, R. P.;
    Cheng, S. Z. D.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.;
    Yeh, F.; Liu, L. Macromolecules 2002, 35, 3553.
    27. Huang, P.; Zhu, L.; Guo, Y.; Ge, Q.; Jing, A. J.; Chen,
    W. Y.; Quirk, R. P.; Cheng, S. Z. D.; Thomas, E. L.;
    Lotz, B.; Hsiao, B. S.; Avila-Orta, C. A.; Sics, I.
    Macromolecules 2004, 37, 3689.
    28. Chen, W. Y.; Li, C. Y.; Zheng, J. X.; Huang, P.; Zhu,
    L.; Ge, Q.; Quirk, R. P.; Lotz, B.; Deng, L.; Wu, C.;
    Thomas, E. L.; Cheng, S. Z. D. Macromolecules 2004, 37,
    5292.
    29. Zheng, J. X.; Xiong, H.; Chen, W. Y.; Lee, K.; Van
    Horn, R. M.; Quirk, R. P.; Lotz, B.; Thomas, E. L.;
    Shi, A.-C.; Cheng, S. Z. D. Macromolecules 2006, 39,
    641.
    30. Chen, H.-L.; Hsiao, S.-C.; Lin, T.-L.; Yamauchi, K.;
    Hasegawa, H.; Hashimoto, T. Macromolecules 2001, 34,
    671.
    31. Lee, W.; Chen, H. L.; Lin, T. L. J. Polym. Sci Part B:
    Polym. Phys. 2002, 40, 519.
    32. Chen, H.-L.; Wu, J.-C.; Lin, T.-L.; Lin, J. S.
    Macromolecules 2001, 34, 6936.
    33. Zhang, G. Y.; Luo, X. L.; Li, C. F.; Ma, D. Z. J.
    Polym. Sci., Polym. Phys. Ed. 1999, 37, 575.
    34. Loo, Y.-L.; Register, R. A.; Ryan, A. J. Macromolecules
    2002, 35, 2365.
    35. Loo, Y. L.; Register, R. A.; Ryan, A. J. Phys. Rev.
    Lett. 2000, 84, 4120.
    36. Nojima, S.; Kato, K.; Yamamoto, S.; Ashida, T.
    Macromolecules 1992, 25, 2237.
    37. Nojima, S.; Nakano, H.; Ashida, T. Polymer 1993, 34,
    4168.
    38. Nojima, S.; Nakano, H.; Takahashi, Y. Polymer 1994, 35,
    3479.
    39. Hong, S.; Yang, L.; MacKnight, W. J.; Gido, S. P.
    Macromolecules 2001, 34, 7009.
    40. Hong, K. M.; Noolandi, J. Macromolecules 1985, 18, 2486.
    41. Tucker, P. S.; Barlow, J. W.; Paul, D. R.
    Macromolecules 1988, 21, 1678, 2794, 2801.
    42. Hashimoto, T.; Kimishima, K.; Hasegawa, H.
    Macromolecules 1991, 24, 5704.
    43. Hashimoto, T.; Yamasaki, K.; Koizumi, S.; Hasegawa, H.
    Macromolecules 1993, 26, 2895.
    44. Shi, A-C.; Noolandi, J. Macromolecules 1994, 27, 2936.
    45. Shi, A-C.; Noolandi, J.; Hoffmann, H. Macromolecules
    1994, 27, 6661.
    46. Lin, E. K.; Gast, A. P.; Shi, A.-C.; Noolandi, J.;
    Smith, S. D. Macromolecules 1996, 29, 5920.
    47. Yamaguchi, D.; Hashimoto, T. Macromolecules 2001, 34,
    6495.
    48. Kane, L.; Satkowski, M. M.; Smith, S. D.; Spontak, R.
    J. Macromolecules 1996, 29, 8862.
    49. Papadakis, C. M.; Mortensen, K.; Posselt, D. Eur. Phys.
    J. B 1998, 4, 325.
    50. Matsen, M. W. J. Chem. Phys. Ed. 1995, 103, 3268.
    51. Court, F.; Hashimoto, T. Macromolecules 2001, 34, 2536.
    52. Court, F.; Hashimoto, T. Macromolecules 2002, 35, 2566.
    53. Birshtein, T. M.; Liatskaya, Y. V.; Zhulina, E. B.
    Polymer 1990, 31, 2185.
    54. Zhulina, E. B.; Birshtein, T. M. Polymer 1991, 32, 1299.
    55. Court, F.; Yamaguchi, D.; Hashimoto, T. Macromolecules
    2006, 39, 2596.
    56. Smith, P.; Manley R. S. J. Macromolecules 1979, 12, 483.
    57. Prud’ home, R. E. J. Polym. Sci., Part B: Polym Phys.
    1982, 20, 307.
    58. (a) Cheng, S. Z. D.; Wunderlich, B. J. Polym. Sci.,
    Part B: Polym. Phys. 1986, 24, 577. (b) Cheng, S. Z.
    D.; Wunderlich, B. J. Polym. Sci., Part B: Polym. Phys.
    1986, 24, 595. (c) Cheng, S. Z. D.; Wunderlich, B. J.
    Polym. Sci., Part B: Polym. Phys. 1988, 26, 1947.
    59. Balijepalle, S.; Schultz, J. M.; Lin, J. S.
    Macromolecules 1996, 29, 6601.
    60. Huang, Y.-Y.; Nandan, B.; Chen, H.-L.; Liao, C.-S.;
    Jeng, U.-S. Macromolecules (Communication to the
    Editor) 2004, 37, 8175.
    61. Chen, H. L.; Wang, S. F. Polymer 2000, 41, 5157.
    62. Qiu, Z.; Ikehara, T.; Nishi, T. Polymer 2003, 44, 2799.
    63. Arlie, J. P.; Spegt, P. A.; Skoulios, A. E. Makromol.
    Chem. 1966, 99, 170.
    64. Arlie, J. P.; Spegt, P. A.; Skoulios, A. E. Makromol.
    Chem. 1967, 104, 212.
    65. Kovacs, A. J.; Gonthier, A. Colloid Polym. Sci. 1972,
    250, 530.
    66. Kovacs, A. J.; Gonthier, A.; Straupe, C. J. Polym.
    Sci., Polym. Symp. 1975, 50, 283.
    67. Kovacs, A. J.; Straupe, C.; Gonthier, A. J. Polym.
    Sci., Polym. Symp. 1977, 59, 31.
    68. Kovacs, A. J.; Straupe, C. J. Crystal Growth 1980, 48,
    210.
    69. Sodergard, A.; Stolt, M. Prog. Polym. Sci. 2002, 27,
    1123.
    70. Younes, H.; Cohn, D.; Eur. Polym. J. 1988, 24, 765.
    71. Nakafuku, C. Polym. J. 1996, 28, 568.
    72. Sheth, M.; Kumar, R. A. J. Appl. Polym. Sci. 1997, 66,
    1495.
    73. Nijenhuis, A. J.; Pennings, A. J. Polymer 1996, 37,
    5849.
    74. Yang, J. M.; Chen, H. L. Polym. J. 1997, 8, 657.
    75. Lai, W. C.; Liau, W. B.; Lin, T. T. Polymer 2004, 45,
    3073.
    76. Chen, H. L.; Wang, S. F. Polymer 2000, 41, 5157.
    77. Qiu, Z.; Ikehara, T. Nishi, T. Polymer 2003, 44, 2799.
    78. Hsu, J. Y. et al. manuscript in preparation.
    79. Roe, R. J. Methods of X-ray and Neutron Scattering in
    Polymer Science 2000 New York Oxford, Oxford University
    Press.
    80. Yoo, E. S.; Im, S. S. J. Polym. Sci. Polym. Phys. 1999,
    37, 1357.
    81. Qiu, Z.; Ikehara, T.; Nishi, T. Polymer 2003, 44, 2799.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE