簡易檢索 / 詳目顯示

研究生: 黃佩瑜
Pei-yu Huang
論文名稱: P-Laplacian 邊界爆炸值問題解存在之充分與必要條件之研究
On Necessary and Sufficient Conditions for the Existence of Solutions of a P-Laplacian Boundary Blow-up Problem
指導教授: 王信華
Shin-Hwa Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2002
畢業學年度: 90
語文別: 英文
論文頁數: 31
中文關鍵詞: P次拉普拉斯算子邊界爆炸值問題非負解變號解存在分歧曲線多樣性
外文關鍵詞: P-Laplacian Boundary Blow-up Problem, nonnegative solution, sign-changing solution, existence, multiplicity, bifurcation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們研究 p-Laplacian 邊界爆炸值問題解存在之充分與必要條件.我們也研究分歧曲線 λ(ρ) 的漸近行為,其中ρ代表解u(x)在(0,1)的最小值。特別的是,我們探討分歧曲線 λ(ρ)在ρ=0的連續性。我們研究的結果有助於去決定對於給定的參數λ>0,p-Laplacian 邊界爆炸值問題解的個數,且我們也提供了幾個有趣的例子。


    We investigate the necessary and sufficient conditions for the existence of solutions of the p-Laplacian boundary blow-up problem .We also study asymptotic behaviors of the bifurcation curve λ(ρ) , where ρ:=min{x in (0,1)}u(x). In particular, we study the continuity of λ(ρ) at ρ=0. Our results help to determine the number of solutions for any λ>0. Some interesting examples are given.

    Contents 1.Introduction…………………………2 2.Main Results…………………………4 3.Lemmas…………………………………11 4.Proofs of Main Results……………18 References………………………………30

    1.A. Aftalion and W. Reichel, Existence of two boundary blow-up solutions for semilinear elliptic equations, J. Differential Equations 141 (1997), 400-421.
    2.V. Anuradha, C. Brown and R. Shivaji, Explosive nonnegative solutions to two point boundary value problems, Nonlinear Analysis 26(1996), 613-630.
    3.C. Bandle and M. Marcus, Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior, J. Analyse Math.58 (1992), 9-24.
    4.C. Bandle and M. Marcus, Asymptotic behaviour of solutions and their derivatives, for semilinear elliptic problems with blowup on the boundary, Ann. Inst. H. Poincare Anal. Non Lineaire} 12(1995), 155--171.
    5.C. Bandle and M. Marcus, On second-order effects in the boundary behaviour of large solutions of semilinear elliptic problems, Differential Integral Equations 11(1998), 23--34.
    6.L. Bieberbach, △u=e^(u) and die automorphen Funktionen,Math. Annln 77 (1916), 173-212.
    7.Y. J. Cheng, Some surprising results on a one-dimensional elliptic boundary value blow-up problem, Z. Anal. Anwendungen 18 (1999), 525--537.
    8.G. Diaz and R. Letelier, Explosive solutions of quasilinear elliptic equations: existence and uniqueness, Nonlinear Analysis 20 (1993), 97-125.
    9.J. B. Keller, On solutions of △u=f(u), Comm. Pure Appl. Math.10 (1957), 503-510.
    10.A. V. Lair and A. W. Wood, Large solutions of semilinear elliptic problems, Nonlinear Analysis 37 (1999), 805-812.
    11.A. C. Lazer and P. J. McKenna, On a problem of Bieberbach and Rademacher, Nonlinear Analysis 21 (1993), 327-335.
    12.C. Loewner and L. Nirenberg, Partial differential equations invariant under conformal or projective transformations, in Contributions to Analysis (A Collection of Paper Dedicated to Lipman Bers, (1974) pp. 245-272, Academic Press, New York.
    13.M. Marcus and L. Veron, Uniqueness of solutions with blowup at the boundary for a class of nonlinear elliptic equations, C. R. Acad. Sci. Paris 317(1993), 559-563.
    14.J. Matero, Quasilinear elliptic equations with boundary blow-up, J. Analyse Math.69 (1996), 229-247.
    15.P. J. McKenna, W. Reichel, and W. Walter, Symmetry and multiplicity for nonlinear elliptic differential equations with boundary blow-up, Nonlinear Analysis 28 (1997), 1213-1225.
    16.R. Osserman, On the inequality △u≧f(u),Pacific J. Math.7 (1957), 1641-1647.
    17.H. Rademacher, Einige besondere problem partieller Differential gleichungen, in Die Differential- and Integralgleichungen, der Mechanik and Physik I, 2nd edition (1943), pp. 838-845, Rosenberg, New York.
    18.S.-H. Wang,\ Existence and multiplicity of boundary blow-up nonnegative solutions to two point boundary value problems,Nonlinear Analysis 42 (2000), 139-162.
    19.S.-H. Wang, Y.-T. Liu and I-A Cho, An explicit formula of the bifurcation curve for a boundary blow-up problem, to appear in Dynamics of Continuous, Discrete and Impulsive Systems.
    20.S.-H. Wang and M.-T. Shieh, Necessary and sufficient conditions for the existence of solutions of a boundary blow-up problem, submitted.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE