研究生: |
王前升 Wang, Chien-Sheng |
---|---|
論文名稱: |
以氧化銦錫作為閘極金屬之P型氮化鎵閘極高電子遷移率電晶體之研究 Study on p-GaN Gate High Electron Mobility Transistor with ITO p-ohmic electrode |
指導教授: |
黃智方
Huang, Chih-Fang |
口試委員: |
盧向成
Lu, Shiang-cheng 吳添立 Wu, Tian-Li |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | P型氮化鎵 、高電子遷移率電晶體 、氧化銦錫 、自我對準 、增強型 |
外文關鍵詞: | p-GaN, HEMT, ITO, Self-aligned, E-mode |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,我們首次以氧化銦錫作為p-GaN gate元件之歐姆接觸閘極金屬並成功以矽基板之P型氮化鎵/氮化鋁鎵/氮化鎵磊晶結構製作出高電子遷移率電晶體(HEMT)及發光高電子遷移率電晶體(LEHEMT),經由良好的P型氮化鎵蝕刻深度控制,兩者之臨界電壓(threshold voltage)皆為0.2V,最大轉移電導為96.6mS/mm、104.68mS/mm,在閘極電壓為1V時定義其導通電阻(specific on-state resistance, Ron,sp)HEMT為2.43 mΩ-cm2 、LEHEMT為4.74 mΩ-cm2。並進一步對此元件進行可靠度研究,發現以氧化銦錫作為閘極金屬雖然有稍大的閘極漏電流產生,在閘極電壓應力及長時間電壓應力等可靠度測試中仍有不錯的特性。
此外LEHEMT擁有良好的發光特性,於閘極電壓(Vg)為3V、汲極電壓(Vd)為10V時,發出波長為363.3 nm之紫外光,同時可透過調變Vg及Vd有效地控制發光強度。另外,本實驗也透過不同的光罩設計作為比較,發現汲極在中央的環型結構能使發光更集中,期待能夠使用在光通訊與主動式矩陣等相關應用。
In this study, we demonstrated the p-GaN gate HEMT with ITO P-ohmic electrode for the first time. HEMT and LEHEMT were successfully fabricated with p-GaN/AlGaN/GaN epitaxial layers on silicon substrates. With precise p-GaN etching control, threshold voltage of 0.2 V was obtained in both devices, the maximum transconductance of HEMT and LEHEMT was 96.6ms/mm and 104.68ms/mm respectively. At Vg = 1 V, the specific on-state resistance of these two devices were 2.43 mΩ-cm2 and 4.74 mΩ-cm2. Furthermore, we investigate preliminary reliability of the fabricated devices. Even though the gate leakage current of ITO p-GaN gate HEMT was slightly higher, the results from gate stress and long-term stress reliability test still showed very good characteristics.
Besides, the good optical properties of LEHEMT was observed at Vg = 3 V and Vd = 10 V. The wavelength of the emitted light was 363.3 nm. The light output intensity can be modulated by the gate voltage and the drain voltage. Light patterns with different layout designs are also compared in this study for future applications in optical communication and active matrix LEDs.
[1] Y. Y. Wong, Y. S. Chiu, T. T. Luong, T. M. Lin, Y. T. Ho, Y. C. Lin and E. Y. Chang, "Growth and fabrication of AlGaN/GaN HEMT on SiC substrate," in International Conference on Semiconductor Electronics, pp. 729-732, Sep 2012.
[2] F. Roccaforte , G. Greco,P. Fiorenza and F. Iucolano, "An Overview
of Normally-Off GaN-Based High Electron Mobility Transistors," Materials, vol. 12, no. 10, Jan. 2019.
[3] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, and I. Omura, " Recessed-Gate Structure Approach Toward Normally Off High-Voltage AlGaN/GaN HEMT for Power Electronics Applications," IEEE Trans. Electron Devices, vol. 53, no. 2, pp. 356-362, Feb. 2006.
[4] Y. Cai, Y. Zhou, K. M. Lau, and K. J. Chen, "Control of Threshold Voltage of AlGaN/GaN HEMTs by Fluoride-Based Plasma Treatment: From Depletion Mode to Enhancement Mode," IEEE Electron Device Lett, vol. 26, no. 7, pp. 435-437, Jul. 2005.
[5] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, "Gate Injection Transistor (GIT)—A Normally-Off AlGaN/GaN Power Transistor Using Conductivity Modulation," IEEE Trans. Electron Devices, vol. 54, no. 12, pp. 3393–3399, Dec. 2007.
[6] S. Kato, Y. Satoh, H. Sasaki, I. Masayuki, S. Yoshida, "C-doped GaN buffer layers with high breakdown voltages for high-power operation AlGaN/GaN HFETs on 4-in Si substrates by MOVPE," Journal of Crystal Growth, vol. 298, pp. 831-834, 2007.
[7] T. Fujii, N. Tsuyukuchi, Y. Hirose, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, "Control of Threshold Voltage of Enhancement-Mode AlxGa1-xN/GaN Junction Heterostructure Field-Effect Transistors Using p-GaN Gate Contact," Japanese Journal of Applied Physics, vol. 46, No. 1, pp. 115-118, 2007.
[8] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann and K. Chu, "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 85, no. 6, pp. 3222-3233, Mar 1999.
[9] M. Asif Khan, J. N. Kuznia, J. M. Van Hove, N. Pan and J. Carter, "Observation of a twodimensional electron gas in low pressure metalorganic chemical vapor deposited GaN-AlxGa1−xN heterojunctions," Appl. Phys. Lett., vol. 60, no. 24, pp. 3027-3029, Mar 1992.
[10] L. Shen, S. Heikman, B. Moran, R. Coffie, N.-Q. Zhang, D. Buttari, I. P. Smorchkova, S. Keller, S. P. DenBaars and U. K. Mishra, "AlGaN/AlN/GaN high-power microwave HEMT," Electron Devices Letters, vol. 22, no. 10, pp. 457-459, Oct 2001.
[11] S. Mizuno,Y. Ohno, S. Kishimoto, K. Maezawa and T. Mizutani, "Large Gate Leakage Current in AlGaN/GaN High Electron Mobility Transistors," Jpn. J. Appl. Phys., vol. 41, Part 1, no. 8 pp. 5125-5126 , Aug 2002.
[12] L. Sayadi, G. Iannaccone, S. Sicre, O. Häberlen, and G. Curatola, "Threshold voltage instability in p-GaN gate AlGaN/GaN HFETs," IEEE Trans. Electron Devices, vol. 65, no. 6, pp. 2454–2460, Jun. 2018.
[13] A. N. Tallarico, S. Stoffels, P. Magnone, N. Posthuma, E. Sangiorgi, S. Decoutere, and C. Fiegna, "Investigation of the pGaN Gate Breakdown in Forward-Biased GaN-Based Power HEMTs," IEEE Electron Device Lett., vol. 38, no. 1, pp. 99–102, 2017..
[14] X. Hu, G. Simin, J. Yang, M. A. Khan, R. Gaska, and M. S. Shu, "Enhancement mode AIGaN/GaN HFET with selectively grown pn junction gate," Electron. Lett., vol. 36, no. 8, pp. 753–754, 2000.
[15] O. Hilt, F. Brunner, E. Cho, A. Knauer, E. Bahat-Treidel, and J. Würfl, "Normally-off high-voltage p-GaN gate GaN HFET with carbon-doped buffer," in Proc. IEEE 23rd Int. Symp. Power Semiconductor Devices ICs, pp. 239–242, Jun. 2011.
[16] I. Hwang, J. Kim, H. S. Choi, H. Choi, J. Lee, K. Y. Kim, J.-B. Park, J. C. Lee, J. Ha, J. Oh, J. Shin, and U.-I. Chung, "p-GaN gate HEMTs with tungsten gate metal for high threshold voltage and low gate current," IEEE Electron Device Lett., vol. 34, no. 2, pp. 202-204, Feb. 2013.
[17] L.-Yu Su, F. Lee, and J. J. Huang, "Enhancement-Mode GaN-Based High-Electron Mobility Transistors on the Si Substrate With a P-Type GaN Cap Layer," IEEE Trans. Electron Devices, VOL. 61, NO. 2, pp. 460-465, Feb. 2014.
[18] T.-L. Wu, D. Marcon, S. You, N. Posthuma, B. Bakeroot, S. Stoffels, M. V. Hove, G. Groeseneken, and S. Decoutere, "Forward bias gate breakdown mechanism in enhancement-mode p-GaN gate AlGaN/GaN high electron mobility transistors," IEEE Electron Device Lett., vol. 36, no. 10, pp. 1001-1003, Oct. 2015.
[19] M.Ťapajna, O. Hilt, E. Bahat-Treidel, J. Würfl, and J. Kuzmík,"Gate reliability investigation in normally-off p-type-GaN cap/AlGaN/GaN HEMTs under forward bias stress," IEEE Electron Device Lett., vol. 37, no. 4, pp. 385–388, Apr. 2016.
[20] G. Greco, F. Iucolano, S. Di Franco, C. Bongiomo, A. Patti, and F. Roccaforte, "Effects of annealing treatments on the properties of Al/Ti/p-GaN interfaces for normally OFF p-GaN HEMTs," IEEE Trans. Electron Devices, vol. 63, no. 3, pp. 2735–2741, Jul. 2016.
[21] R. Hao, K. Fu, G. Yu, W. Li, J. Yuan, L. Song, Z. Zhang, S. Sun, X. Li, Y. Cai, X. Zhang, and B. Zhang, "Normally-off p-GaN/AlGaN/GaN high electron mobility transistors using hydrogen plasma treatment," Appl. Phys. Lett., vol. 109, p. 152106, Oct. 2016.
[22] M. Ruzzarin, M. Meneghini, A. Barbato, V. Padovan, O. Haeberlen, M. Silvestri, T. Detzel, G. Meneghesso, and E. Zanoni, "Degradation mechanisms of GaN HEMTs with p-type gate under forward gate bias overstress," IEEE Trans. Electron Devices, vol. 65, no. 7, pp. 2778–2783, Jul. 2018.
[23] G. Lükens, H. Hahn, H. Kalisch, and A. Vescan, "Self-aligned process for selectively etched p-GaN-gated AlGaN/GaN-on-Si HFETs," IEEE Trans. Electron. Devices, vol. 65, no. 9, pp. 3732–3738, Sep. 2018.
[24] F.G. Kalaitzakis, E. Iliopoulos , G. Konstantinidis , N.T. Pelekanos , "Monolithic integration of nitride-based transistor with Light Emitting Diode for sensing applications," Microelectronic Engineering, vol. 90, pp. 33-36, 2012.
[25] Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, Jr., T. P. Chow, "Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate," Appl. Phys. Lett., Vol. 102, p. 192107, 2013.
[26] C. Liu, Y. Cai, X. Zou, and K. M. Lau, "Low-Leakage High-Breakdown Laterally Integrated HEMT-LED via n-GaN Electrode," IEEE Photonics Technol. Lett., Vol. 28, No. 10, pp. 1130-1132, MAY 2016.
[27] Y. Cai , X. Zou, C. Liu , K. M. Lau, "Voltage-Controlled GaN HEMT-LED Devices as Fast-Switching and Dimmable Light Emitters," IEEE Electron Device Letters, Vol. 39, No. 2, pp. 224-227, 2018.
[28] Y. Cai , Y.Gong, Jie Bai , X. Yu, C. Zhu, V.Esendag , K. B. Lee , and T. Wang, "Controllable Uniform Green Light Emitters Enabled by Circular HEMT-LED Devices," IEEE Photonics. Journal., vol. 10, no. 5, Aug. 2018.
[29] G. Grecoa, F. Iucolano, F. Roccaforte, "Review of technology for normally-off HEMTs with p-GaN gate," Materials Science in Semiconductor Processing, Vol. 78, pp. 96–106, 2018.
[30] H. K. Cho, T. Hossain, J. W. Bae and I. Adesida, "Characterization of Pd/Ni/Au ohmic contacts on p-GaN," Solid-State Electronics, vol. 49, no. 5, pp. 774-778, May 2005.
[31] H. W. Jang, S. Y. Kim and J. L. Lee, "Mechanism for Ohmic contact formation of oxidized Ni/Au on p-type GaN," Journal of Applied Physics, vol. 94, no. 3, pp. 1748-1752, Aug 2003.
[32] J. L. Lee and J. K. Kim, "Ohmic Contact Formation Mechanism of Pd Nonalloyed Contacts on p-Type GaN," Journal of The Electrochemical Society, vol. 74, no. 16, pp. 2297-2302, Apr 2000.
[33] J. He, G. Tang, and K. J. Chen, "VTH instability of p-GaN gate HEMTs under static and dynamic gate stress," IEEE Electron Device Lett., vol. 39, no. 10, pp. 1576–1579, Oct. 2018.