研究生: |
連秋旺 Lien, Chiu-Wang |
---|---|
論文名稱: |
相容於邏輯製程之接點耦合閘記憶體研究 The Study of a New MTP Memory Cell with Contact Coupling Gate by a Fully CMOS Compatible Process |
指導教授: |
林崇榮
Lin, Chrong-Jung 金雅琴 King, Ya-Chin |
口試委員: |
張彌彰
邱博文 張孟凡 曾俊元 施教仁 劉志益 |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 139 |
中文關鍵詞: | 接點耦合 、邏輯非揮發性記憶體 、非揮發性記憶體 、多次寫入 、嵌入式 、邏輯相容記憶體 |
外文關鍵詞: | Contact Coupling, Logic Nonvolatile Memory, NVM, Multi-Time Programmable, Embedded, Logic Compatible Memory |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著半導體技術的演進,個人化,可攜帶的電子裝置越來越普及,例如手機、筆記型電腦、數位相機、攝影機。幾乎所有的電子裝置都需要非揮發性的記憶體來儲存程式碼或資料,使重要的資料不會因電池沒電而消失。同時為了方便攜帶,增加產品競爭力,電子裝置越來越輕薄,非揮發性記憶體逐漸由單獨的記憶體晶片轉為內嵌在個別晶片中,以降低電路板的面積。與邏輯製程相比,傳統的非揮發性記憶體元件需要多十幾道光罩與額外的製程步驟,這對良率與可靠度是很大的挑戰。
本論文提出一個可以完全相容於標準邏輯製程的非揮發性記憶體元件,此元件以接點耦合閘的新結構做為控制閘,接點耦合閘是以接點(contact)以及電阻保護氧化層 (RPO)組成,因控制閘是在浮動閘上方,本元件很容易微縮到先進製程。我們在0.18μm的邏輯製程上製造元件以及2Kbits的測試晶片。以通道熱電子注入及FN穿隧效應作為寫入與抹除的機制,藉由接點耦合閘控制浮動閘的電位,我們可以得到快速的寫入與抹除效率。同時在可靠性方面,耐用度 (endurance) 以及資料的保存 (data retention) 也有很好的效能。
本論文提出兩種接點耦合閘的元件,單電晶體的架構可以使記憶體的面積達到最小,適用於大容量非揮發性記憶體的應用,然而對於小容量的嵌入式非揮發性記憶體,雙電晶體的架構會比較適合,因為不需要考慮過度抹除造成位元線漏電的問題,可以簡化周邊電路的設計。由實驗結果,兩種元件都具備很好的寫入、抹除效率以及耐用度與資料可靠度,再加上元件的結構可以很容易微縮到先進製程,本論文所提出的接點耦合閘元件非常適合於邏輯製程相容的非揮發性記憶體的應用。
This dissertation proposes a new fully CMOS logic compatible Multi-Time Programmable (MTP) memory cell for serving the high density and low cost requirements of logic non-volatile memory applications. The MTP cell firstly adopts a novel Contact Coupling Gate (CCG) structure as an additional control gate in highly efficient operations and high density memory applications. The new CCG structure is composed of a contact electrode and RPO oxide, which play the roles of control gate and inter-poly oxide in a conventional Stack Gate Flash. The new and small CCG MTP cell has been characterized and proposed to replace the current MTP solution with a larger area or complex or incompatible processes. In terms of the feasibility study, a dense-pitched 2Kbit CCG memory chip has also been successfully demonstrated on a pure 0.18μm CMOS logic process without extra masking or process steps. With the aid of the CCG, a highly efficiently CHE program and FN tunneling erase are achieved and the cell still retains its high cycling endurance and superior data retention. Since the cell size of the CCG MTP can be reduced to 0.808μm2 by a 0.18um CMOS logic design rule, this makes it very suitable for a high density application with fully CMOS logic compatible processes. In summary, with its high performance, low cost, and simple fabrication, the proposed CCG MTP technology is one of the most promising solutions in advanced logic NVM applications.
[1] C. H. Hsu, Y. T. Lin, and S. J. Shen, “Future Prospective of Programmable Logic Non-Volatile Device” ASSCC IEEE Asian, pp. 35-37, Nov. 2006.
[2] M. H. Chi and A. Bergemont, “A New Single-poly FLASH Memory Cell with Low-voltage and Low power Operations for Embedded Applications,” IEEE Device Research Conference Digest 5th, pp. 126-127, Jun. 1997.
[3] S. Lai, “Flash Memories: where we were and where we are going,” IEEE IEDM Tech. Dig., pp. 971, 1998.
[4] M. Momodomi, T. Tanaka, Y. Iwata, Y. Tanaka, H. Oodiara, Y. Itoh, R. Shirota, K. Ohuchi, and F. Matsuoka, “A 4-Mbit NAND-EEPROM with tight programmed Vt distribution,” IEEE Journal of Solid State Circuit, vol. 26, Issue 4, 1991.
[5] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, “Introduction to flash memory,” Proc. IEEE, vol. 91, no. 4, pp. 489-502, Apr. 2003.
[6] A. Pesavento, T. Gilliland, C. Lindhorst, S. Srinivas, F. Bernard, S. Salazar, C. Diorio, S. King, C. Bockorick, B.Wang, Y. Ma, C. H.Wang, T. Humes, and J. Caywood, “Embedded nonvolatile memory in logic CMOS,” in Proc. IEEE NVSMW, pp. 49-50, 2004.
[7] Jack Zezhong Peng, “Semiconductor Memory Cell and Memory Array Using a Breakdown Phenomena in an Ultra-thin Dielectric,” US patent 6667902 B2, Dec. 2003.
[8] C. S. Hsieh, P. C. Kuo, C. S. Chiu, C. H. Hon, C. C. Fan, W. C. Kung, Z. W. Wang, and Erik S. Jeng, “NVM Characteristics of single MOSFET cells Using Nitride Spacers With Gate-to-Drain NOI,” IEEE Trans. Electron Devices, vol. 51, pp. 1811-1817, Nov. 2004.
[9] Y. H. Tsai, H. M. Chen, H. Y. Chiu, H. S. Shih, H. C. Lai, Y. C. King, and C. J. Lin, "45nm Gateless Anti-Fuse Cell with CMOS Fully Compatible Process," IEEE IEDM Tech. Dig., pp. 95-98, 2007.
[10] M. Chen, C. E. Huang, Y. H. Tseng, Y. C. King, and C. J. Lin, "A New Antifuse Cell With Programmable Contact for Advance CMOS Logic Circuits," IEEE Electron Device Letters, vol. 29, pp. 522-524, 2008.
[11] C. E. Huang, H. M. Chen, H. C. Lai, Y. J. Chen, Y. C. King, and C. J. Lin, "A New Self-Aligned Nitride MTP Cell with 45nm CMOS Fully Compatible Process," IEEE IEDM, pp. 91-94, 2007.
[12] T. L. Lee, Y. H. Tsai, W. J. Lin, H. L. Yang, C. W. Lien, C. J. Lin, and Y. C. King, “A New Differential P-Channel Logic-Compatible Multiple-Time Programmable (MTP) Memory Cell With Self-Recovery Operation,” IEEE Electron Device Lett., Issue 99, pp. 587-589, 2011.
[13] K. H. Lee, and Y. C. King, “New single-poly EEPROM with cell size down to 8F2 for high density embedded non-volatile memory applications,” VLSI Symp. Tech. Dig., pp 93-94, 2003.
[14] S. C. Wang, S. J. Shen, C. H. Hsu, “Neobit® - high reliable logic non-volatile memory (NVM),” Physical and Failure Analysis of Integrated Circuits, pp. 111- 114, Jul. 2004.
[15] C. H. Hsu, Y. T. Lin, C. H. Chu, S. J. Shen, C. S. Yang, and M. C. Ho, “Electrically erasable programmable logic device,” U.S. patent 6617637, Sep. 2003.
[16] Y. Ma, T. Gilliland, B. Wang, R. Paulsen, A. Pesavento, C. H. Wang, H. Nguyen, T. Humes, and C. Diorio, “Reliability of pFET EEPROM with 70-Å tunnel oxide manufactured in generic logic CMOS processes,” IEEE Trans. Device Mater. Rel., vol. 4, no. 3, pp. 353-358, Sep. 2004.
[17] S. M. Sze, Physics of Semiconductor Devices, 2nd Edition, John Wiley & Sons, Inc., 1985.
[18] Fowler R. H. and Nordheim L., “Electron Emission in Intense Electric Fields,” Proceedings of the Royal Society of London, vol. A119, pp. 173-81,1928.
[19] M. Lenzlinger and E. H. Snow, “Fowler-Nordheim Tunneling into Thermally Grown SiO2,” J. Appl. Phys., Vol. 40, p. 278, 1969.
[20] P. E. Cottrell, R. R. Troutman, and T. H. Ning, “Hot Electron Emission in n-Channel IGFET’s,” IEEE J. Solid State Circuits, vol. SC-14, p. 442,1979.
[21] C. Hu, “Lucky-electron model of channel hot electron emission,” IEEE IEDM Tech. Dig., pp. 22-25, 1979.
[22] T. C. Ong, A. Fazio, N. Mielke, S. Pan, N. Tighos, G. Atwood, and S. Lai, ”Erratic erase in ETOXTM Flash Memory Array,” Symp. VLSI Tech. Dig., p. 83, 1993.
[23] T. C. Ong, K. Seki, P. K. Ko, and C. Hu, ” p-MOSFET gate current and device degradation,” Symp. Reliability Physics, pp. 178-182, 1989.
[24] K. Yoshikawa, M. Sato, and Y. Ohshima, “A Reliable Profiled Lightly Doped Drain (PLD) Cell for High-Density Submicrometer EPROM’s and Flash EEPROM’s,” IEEE Trans. on Electron Devices, vol. ED-37, no. 4, pp. 999-1006, Apr. 1990.
[25] T. Ohnakado, K. Mitsunaga, and M. Nunoshita, “Novel Electron Injection Method Using Band- to-Band Tunneling Induced Hot Electron(BBHE) for Flash Memory with a P-channel Cell,” IEEE IEDM Tech. Dig., pp. 279-282, 1995.
[26] T. Ohnakado, H. Onoda, O. Sakamoto, K. Hayashi, N. Nishioka, H. Takada, K. Sugahara, N. Ajika, and S. Satoh, “Device Characteristics of 0.35um P-Channel DINOR Flash Memory Using Band-to-Band Tunneling-Induced Hot Electron (BBHE) Programming,” IEEE Trans. on Electron Devices, vol. 46, no. 9, Sept. 1999.
[27] H. A. R. Wegener, A. J. Lincoln, H. C. Pao, M. R. O’Connell, and R. E. Oleksiak, “The variable threshold transistor, a new electrically alterable non-destructive read-only storage device,” IEEE IEDM Tech. Dig., p. 70, 1967.
[28] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices,” Bell Syst. Tech. J., vol. 46, p. 1288, 1967.
[29] D. Frohman-Bentchkowsky, “A fully decoded 2048-Bit Electrically Programmable FAMOS Read-Only Memory,” IEEE Journal of Solid State Circuit, vol. SC-6, no.5, pp. 301-306, Oct. 1971.
[30] R. D. Katznelson and D. Frohman-Bentchkowsky, “An Erase Model for FAMOS EPROM Devices,” IEEE Trans. on Electron Devices, vol. ED-27, no. 9, pp. 1744-1752, Sept. 1980.
[31] P. Salabury, W. Morgan, G. Perlegos, and R. Simko, “High Performance MOS EPROMs Using a Stacked-Gate Cell,” IEEE ISSCC Tech. Dig., pp. 186-187, 1977.
[32] Hisakazu. Iizuka, F. Masuoka, T. Sato, and M. Ishikawa, “ Electrically Alterable Avalanche-Injection-Type MOS READ-ONLY Memory with Stacked-Gate Structure,” IEEE Trans. on Electron Devices, vol. ED-23, no. 4, pp. 379-387, Apr. 1976.
[33] W. S. Johnson, G. Perlegos, A. Renninger, G. Kuhn, and T. R. Ranganath, “A 16Kb Electrically Erasable Nonvolatile Memory,” IEEE ISSCC Tech. Dig.,pp. 152-153, Feb. 1980.
[34] F. Masuoka, M. Asano, H. Iwahashi, T. Komuro, and S. Tanaka, “A new Flash EEPROM cell using triple polysilicon technology,” IEEE IEDM Tech. Dig., pp. 464-467, 1984.
[35] H. Onoda, Y. Kunori, S. Kobayashi, M. Ohi, A. Fukumoto, N. Ajika, and H. Miyoshi, "A novel cell structure suitable for a 3V operation, sector erase Flash memory", IEEE IEDM Tech. Dig., pp. 599-602, 1992.
[36] H. Kume, M. Kato, T. Adachi, T. Nishida, T. Tanaka, T. Sasaki, T. Okazaki, N. Miyamoto, S. Saeki, Y. Ohji, M. Ushiyama, J. Yugami, T. Morimoto, T. Nishida, “A 1.28 μm2 contactless memory cell technology for a 3V only 64Mb EEPROM,” IEEE IEDM Tech. Dig., pp. 991-993, 1992.
[37] F. Masuoka, “Bit by bit erasable EEPROM with single transistor per bit,” IEEE IEDM Tech. Dig., pp. 20-23, 1981.
[38] R. Cuppens, C. D. Hartgring, J. F. Verwey, and H. L. Peek, “An EEPROM for microprocessors and custom logic,” IEEE ISSCC Tech. Dig., pp. 268-269, Feb. 1984.
[39] N. Matsukawa, S. Morita, K. Shinada, J. Miyamoto, J. Tsujimoto, T. Iizuka, and H. Nozawa, “A high density single-polysilicon structure EEPROM with LB (lowered barrier height) oxide for VLSI’s,” Symp. VLSI Tech., p. 100, May 1985.
[40] J. I. Miyamoto, J. I. Tsujimoto, N. Matsukawa, S. Morita, K. Shinada, H. Nozawa, and T. Iizuka, “An Experimental 5-V-Only 256-kbit CMOS EEPROM with a High-Performance Single-Polysilicon Cell,” IEEE Journal of Solid State Circuit, vol. SC-21, no. 5, pp. 852-860, Oct. 1986.
[41] Katsuhiko Ohsaki, Noriaki Asamoto, and Shunichi Takagaki, “A Single Poly EEPROM Cell Structure for Use in Stansard CMOS Processes,” IEEE Journal of Solid State Circuit, vol. 29, no. 3, pp. 311-316, Mar. 1994.
[42] K. Ohsaki, R. Cho, and K. Shigaken, “EEPROM and Logic LSI Chip Including Such EEPROM," US patent 5465231, 1995.
[43] L. Baldi, A. Cascella, and B. Vajana, “A Scalable Single Poly EEPROM Cell for Embedded Memory Applications,” International Solid-State Device Research Conference, pp. 217-220, 1995.
[44] T. Ren, L. Pan, Z. Liu, and J. Zhu, “A novel single poly EEPROM cell structure on thin oxide tunnel technology,” International Solid-State and Integrated Circuits Conference, pp.711-713, Oct. 2004.
[45] M. Takebuchi, H. Ogura, M. Kamata, K. Sakihama, H. Momose, and K. Maeguchi, “A novel integration techology of EEPROM embedded CMOS logic applicalions,” IEEE CICC, pp. 9.6.1-9.6.4, May 1992.
[46] David Fong, Fei Ye, and Jack Zezhong Peng, “Programming Methods and Circuits for Semiconductor Memory Cell and Memory Array Using a Breakdown Phenomena in an Ultra-thin Dielectric,” US patent 6671040 B2, Dec. 2003.
[47] J. Peng, G .Rosendale , M. Fliesler , D. Fong , J. Wang , C. Ng , Zs Liu , and Harry Luan, “A Novel Embedded OTP NVM Using Standard Foundry CMOS Logic Technology,” IEEE NVSMW, pp. 24-26, 2006.
[48] Web Site: http://www.ememory.com.tw/Neobit.aspx
[49] R. L. Lin, and C. H. Hsu, “New Divided-Source Structure to Eliminate Instability of Threshold Voltage in P-Channel Flash Memory Using Channel Hot-Hole-Induced-Hot-Electron Programming,” Symp. VLSI Tech., pp. 203-206, May 1999.
[50] R. L. Lin, Y. S. Wang, and C. H. Hsu, “Multi-Level P-channel Flash Memory,” Solid-State and Integrated Circuit Tech. Conference, pp. 457-463, 1998.
[51] Y. Roizin, E. Pikhay, V. Dayan, and A. Heiman, “High density MTP logic NVM for power management applications,” Memory Workshop, 2009.
[52] A. Atrash, G. Cassuto, W. Chen, V. Dayan, O. Galzur, M. Gutman, A. Heiman, G. Hunsinger, D. Nahmad, A. Parag, E. Pikhay, Y. Roizin, B. Smith, A. Strum, T. Tishbi, and R. Teggatz, “Zero-cost MTP high density NVM module in a CMOS process flow,” Memory Workshop, 2010.
[53] K. Prall, W. I. Kinney, and J. Macro, “Characterization and Suppression of Drain Coupling in Submicrometer EPROM Cells,” IEEE Trans. on Electron Devices, vol. ED-34, no. 12, pp. 2463-2468, Dec. 1987.
[54] L. Z. Wang, D. Huang, H. C. Lin, and R. Chang, “Nonvolatile Flash Memory and Method of Operating th Same," US patent 7099192 B2, Aug. 2006.
[55] Daniel Huang, Lee Wang, H. C. Lin, and Roget Chang, “High-speed low-voltage programming and self-convergent high-speed low-voltage erasing scheme for EEPROM”, US patent 2007/0158733 A1, Jul. 2007.
[56] B. Eitan, J. L. Mccreary, D. Amrany, and J. Shappir, “Substrate Hot-Electron Injection EPROM,” IEEE Trans. on Electron Devices, vol. ED-31, no. 7, pp. 934-942, Jul. 1984.
[57] Y. Nakagome, E. Takeda, H. Kume, and S. Asai, “New Observation of Hot-Carrier Injection Phenomena," Japanese Journal of Applied Physics, vol. 22 Supplement 22-1, pp. 99-102, 1983.
[58] E. Takeda, Y. Nakagome , H. Kume, and S. Asai, “New hot-Carrier Injection and device degradation in submicro MOSFETs," Solid-State and Electron Devices IEE Proceedings I, vol. 130, pp. 144-150, June 1983.
[59] H. C. Sung, T. F. Lei, T. H. Hsu, S. W. Wang, Y. C. Kao, Y. T. Lin, and C. S. Wang, “Novel Single-Poly EEPROM With Damascene Control-Gate Structure,” IEEE Electron Device Lett., vol. 26, no. 10, pp. 770-772, 2005.
[60] E. Aloni, Y. Roizin, A. Heiman, M. Lisiansky, A. Fenigstein, M. Buchbinder, “Method for Fabricating Capacitor Structures Using the First Contact Metal,” US patent 7754559, 2010.
[61] H. Y. Wu, C. W. Tsai, C. W. Lien, Y. D. Chih, and C. J. Lin, “A high-density MTP cell with contact coupling gate by pure CMOS logic process,” IEEE Electron Device Lett., vol. 32, no. 10, pp. 1352-1354, Oct. 2011.
[62] C. W. Lien, H. Y. Wu, C. W. Tsai, C. M. Huang, Y. D. Chih, T. L. Lee, and C. J. Lin, “A New 2T Contact Coupling Gate MTP Memory in Fully CMOS Compatible Process,” IEEE Trans. on Electron Devices, vol. 59, no. 7, pp. 1899-1904, 2012.
[63] A. Chimenton, P. Pellati, and P. Olivo, “Overerase phenomena: an insight into flash memory reliability,” Proc. IEEE, vol. 91, no. 4, pp. 617-626, Apr. 2003.
[64] G. Verma and N. Mielke, “Reliability performance of ETOX based Flash memories,” Proc. Int. Reliability Physics Symp., pp. 158–166, 1988.
[65] S. Aritome, R. Shirota, G. Hemink, T. Endoh, and F. Masuoka, “Reliability issues of Flash memory cells,” Proc. IEEE, vol. 81, pp. 776–788, May 1993.
[66] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells: An overview,” Proc. IEEE, vol. 865, pp. 1248-1271, Aug. 1997.
[67] J. W. Liou, C. J. Huang, H. H. Chen, and G. Hong, “Characterization of process-induced mobile ions on the data retention in flash memory,” IEEE Trans. on Electron Devices, vol. 50, no. 4, pp. 995-1000, Apr. 2003.
[68] A. Kolodny, S. T. K. Nieh, B. Eitan, and J. Shappir, “Analysis and Modeling of Floating-Gate EEPROM Cells,” IEEE Trans. on Electron Devices, vol. ED-33, No. 6, pp. 835-844, Jun.. 1986.
[69] R. Bez, E. Camerlenghi, D. Cantarelli, L. Ravazzi, and G. Crisenza, “A Novel Method for the Experimental Determination of the Coupling Ratios in Submicron EPROM and Flash EEPROM Cells,” IEEE IEDM, pp. 99-101, 1990.
[70] K. T. San, C. Kaya, K. Y. Liu, T. P. Ma, and P. Shah, “A New Technique for Determining the Capacitive Coupling Coefficients in Flash EPROM’s,” IEEE Electron Device Lett., vol. 13, no. 6, Jun. 1992.
[71] M. Wong, K. Y. Liu, and S. W. Huang, “Analysis of the Subthreshold Slope and the Linear Transconductance Techniques for the Extraction of the Capacitance Coupling Coefficients of Floating-Gate Devices,” IEEE Electron Device Lett., vol. 13, no. 11, Nov. 1992.
[72] E. Barke, “Line-to-Ground Capacitance Calculation for VLSI: A Comparison,” IEEE Trans. on Computer-Aided Design, vol. 7, no. 2, Feb. 1988.
[73] IEEE Standard Definitions and Characterization of Floating Gate Semiconductor Arrays, IEEE standard 1005, 1998
[74] T. Miller, S. Illyes, and D. A. Baglee, “Charge loss associated with program disturb stresses in EPROMs,” IEEE IPRS, pp.154-158, 1990.
[75] H. Kume, H. Yamamto, T. Adchi, K. Hagiwara, K. Komori, T. Nishimoto, A. Koike, S. Meguro, T. Hayashida, and T. Tsukada, “A flash-erase EEPROM cell with an asymmetric source and drain structure,” IEEE IEDM Tech. Dig., pp. 560-563, 1987.
[76] S. Yamada, Y. Hiura, T. Yamane, K. Amemiya, Y. Ohshima, and K. Yoshikawa, “Degradation mechanism of Flash EEPROM programming after program/erase cycles,” IEEE IEDM Tech. Dig., pp. 23-26, 1993.
[77] G. Tao, H. Chauveau, D. Boter, E. van der Vegt, D. Dormans, and R. Verhaar, “Characterization and modeling of program/erase induced device degradation in 2T-FNFN-NOR Flash memories,” Proc. Phys. Failure Anal. Integr. Circuits, pp. 1-5, 2008.
[78] K. Naruke, S. Taguchi, and M. Wada, “Stress-induced leakage current limiting to scale down EEPROM tunnel oxide thickness,” IEEE IEDM Tech. Dig., pp. 424-427, 1988.
[79] E. F. Runnion, S. M. I. Gladstone, R. S. Scott, D. J. Dumin, L. Lie, and J. Mitros, “Limitations on oxide thicknesses in Flash EEPROM applications,” IEEE Int. Reliab. Phys. Symp., pp. 93-99, 1996.
[80] Y. Roizin, E. Aloni, A. Birman, V. Dayna, A. Fenigstein, D. Nahmad, E. Pikhay, and D. Zfira, “C-Flash: An Ultra-Low Power Single Poly Logic NVM,” NVSMW, pp. 90-92, 2008.