簡易檢索 / 詳目顯示

研究生: 張良順
論文名稱: 應用接觸點電阻式記憶元件之新型溫度感測器
Application of Temperature Dependent Characteristic of the Random Telegraph Noise on Contact RRAM
指導教授: 金雅琴
King, Ya-Chin
口試委員: 林崇榮
Lin, Chung-Jung
施教仁
Shih, Chiao-Jen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 55
中文關鍵詞: 溫度感測器接觸點記憶元件隨機電報雜訊
外文關鍵詞: Temperature Sensor, Contact Resistive Random Access Memory, Random Telegraph Noise
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著無線感測網路的蓬勃發展,監測環境變數和電子智慧控制系統也因而開創了另一個春天。現今的CMOS邏輯技術能將無線感測之技術應用於單一晶片上,使得成本降低許多,且在面積、重量、和整合方面亦有所突破。使用電子智慧控制系統執行操作或是資料蒐集時,最普遍考慮到之環境因素就是溫度;傳統溫度感測晶片之功率損耗及使用面積卻往往造成了突破上的瓶頸。
    傳統的溫度感測訊號源採用隨正比於絕對溫度之特性,利用電路設計將因溫度變化電流,透過電壓差或者是電流差經過換算後獲得環境溫度。溫度感測元件設計,需考量許多誤差來源以得到正確之溫度數值;如元件出廠時造成的匹配問題,放大器本身的偏差電壓,甚至是在後續數位/類比轉換時解析度的考量。
    本論文透過接觸點電阻式記憶元件所產生的隨機電報雜訊當溫度感測之訊號源,與傳統溫度感測訊號源相比,可有效降低電路面積及功率損耗。考慮隨機電報雜訊本身的特性誤差,只需在出廠時做出校正表,在元件應用前提早做出校正,就能有效提高使用上的便利性。此新型溫度感測器還有另一優勢,接觸點電阻式記憶元件能與標準CMOS邏輯製程完全相容,不需要額外的光罩覆蓋或製程步驟。本論文所提出之新的溫度感測方法,在低壓低功率應用上可行性極高,將有望在未來環境溫度感測應用上占有一席之地。


    Wireless Sensor Networks (WSNs) have become the channel for establishing the interaction between environmental parameters and smart electronic control system. The implementation of WSN sensor nodes on a single chip through the most prevailing CMOS logic process can provide low-cost, integrated, small, and lightweight sensor modules. Temperature is one the most common environmental parameters in these smart electronic systems for control or data collection purposes. Low power consumption and small IC area both are key challenges for these sensing modules mostly run on limited energy source.
    Traditional temperature sensor adopts the detection source with parameters of proportional to the absolute temperature (PTAT). These temperature dependent parameters are the cord in this sensor circuits. In designing a temperature sensor, one needs to consider many sources of errors due to process variations, such as, devices miss-matches and the offset voltage of amplifiers.
    By establishing the relationship between CRRAM’s random telegraph noise (RTN) signal and temperature, a new temperature sensing scheme is demonstrated for the first time. Comparing to traditional detection source, this new sensing scheme could reduce the circuit area and power consumption. While the variation of the RTN signal could be calibrated by an embedded memory. This new sensing scheme is very suitable to low-power low-speed sensor modules.

    第一章 序論 1 1.1 溫度感測器現況 1 1.2 論文大綱 2 第二章 溫度感測器之回顧與發展 3 2.1 雙極性接面電晶體之溫度感測器 3 2.2 金氧半場效電晶體之溫度感測器 4 2.3 電阻式溫度感測器 5 2.4 小結 6 第三章 接觸點電阻式隨機存取記憶體與隨機電報雜訊 16 3.1 接觸點電阻式隨機存取記憶體(CRRAM) 16 3.1.1 結構與佈局設計 16 3.1.2 量測環境介紹 17 3.1.3 基本之電性操作方式 17 3.2 隨機電報雜訊 18 3.2.1 讀取電流之隨機電報雜訊介紹 18 3.2.2 操作電壓之影響 19 3.2.3 隨機電報雜訊之電流電壓轉換 20 3.3 隨機電報雜訊之溫度效應 20 3.3.1 1R結構下溫度效應探討 20 3.3.2 1T1R結構之溫度效應探討 21 第四章 新型溫度感測器之電路 43 4.1 電壓型隨機電報雜訊之設計 43 4.1.1 電路架構與驗證 43 4.1.2 模擬結果 44 4.2 電流型隨機電報雜訊之電路設計 45 4.3 小結 45 第五章 總結及未來展望 52 5.1 總結 52 5.2 未來展望 52 參考文獻 53

    [1]Shervin Sharifi, Tajana ˇSimuni´c Rosing, “Accurate Direct and Indirect On-Chip Temperature Sensing for Efficient Dynamic Thermal Management”, Computer-Aided Design of Integrated Circuit and Systems, IEEE, pp. 1586 – 1599, Oct. 2010.
    [2]Jianguang Chen, Yuhua Cheng, Shaolong Liu, “A High-Accuracy Temperature Sensor With An Inaccuracy of ±1°C From -55°C to 125 °C”, ICSICT, pp. 1444 – 1446, Nov. 2010.
    [3]Tzuu-Shaang Wey, Te-Hsuan Liu, Min-Chuan Lin, Ruey-Lue Wang,Chiung-Min Yeh, Chen-Wei Yu, Chen-Fu Lin, Hann-Huei Tsai, “ A CMOS Temperature Sensor Using Cascoded PNP Transistors”, in IBICA, pp. 233-236, Dec 2011.
    [4]Zito F., Fragomeni L., Aquilino F., Della Corte F.G. “Wireless Temperature Sensor Integrated Circuit with On-Chip Antennas”, in IEEE, pp. 1368-1373, Apr 2010.
    [5]Sasaki, M.; Ikeda, M. ; Asada, K.,”A Temperature Sensor With an Inaccuracy of -1/+0.8℃ Using 90-nm 1-V CMOS for Online Thermal Monitoring of VLSI Circuit”, in Semi. Manu, IEEE, pp. 201-208, May 2008.
    [6]Gaensslen, F.H.; Rideiut, V.L.; Walker, E.J.; Walker, J.J., ”Very Small MOSFET’s for Low-Temperature Operation”, in Electron Devices, IEEE, pp-218-229, Aug. 2005.
    [7]Jen-Hao Yeh, Chitsung Hong, Fu-Ming Hsu, Weileun Fang, “Novel Temperature Sensor Implemented on Nanoporous Anodic Aluminum Oxide Template, in IEEE, pp. 1253-1256, Oct 2011.
    [8]Yuan Heng Tseng, Chia-En Huang, C. -H. Kuo, Y. -D. Chih, Chrong Jung Lin, “High Density and Ultra Small Cell Size of Contact ReRAM(CR-RAM) in 90nm CMOS Logic Technology and Circuit”, IEDM, pp. 1 – 4, Dec. 2009.
    [9]Reid R. Harrison, Cameron Charles, “A Low-Power Low-Noise CMOS Amplifier for Neural Recording Applications”, Solid-State Circuit,IEEE, pp. 958 – 965, June 2003.
    [10]M. Assaad, P. Gérard, D. Flandre, L. A. Francis, “Ultra Low Power, Harsh Environment SOI-CMOS Design of Temperature Sensor Based Threshold Detection and Wake-Up IC”, SOI,IEEE, pp. 1 – 2, Oct. 2010.
    [11]Khalil Arshak, Essa Jafer, “A Wireless Sensor Network System for Pressure and Temperature Signals Monitoring”, ISIE, pp. 1496 – 1501, June 2007.
    [12]Yu-Chi Wu, Pei-Fan Chen, Zhi-Huang Hu. Chao-Hsu Chang, Gwo-Chuan Lee, Wen-Ching Yu, “A Mobile Health Monitoring System Using RFID Ring-Type Pulse Sensor”, Dependable, Autonomic and Secure Computing, IEEE, pp. 317 – 322, Dec. 2009.
    [13]Sanghoon Lee, Heung-Jae Cho, Younghwan Son, Dong Seup Lee, Hyungcheol Shin, “Characterization of Oxide Traps Leading to RTN in High-k Metal Gate MOSFETs”, IEDM , pp. 1 – 4, Dec. 2009.
    [14]Kyosuke Ito, Takashi Matsumoto, Shinichi Nishizawa, Hiroki Sunagawa, Kazutoshi Kobayashi, Hidetoshi Onodera, “Modeling of Random Telegraph Noise under Circuit Operation –Simulation and Measurement of RTN-induced delay fluctuation”, ISQED,pp. 1 – 6, March 2011.
    [15]Yuan Heng Tseng, Wen Chao Shen, Chia-En Huang, Chrong Jung Lin, Ya Chin King, “Electron Trapping Effect on the Switching Behavior of Contact RRAM Device through Random Telegraph Noise Analysis”, IEDM, pp. 28.5.1 – 28.5.4, Dec. 2011.
    [16]B. H. Hong, L. Choi, Y. C. Jung, S.W. Hwang, K. H. Cho, K. H. Yeo, D. W. Kim, G. Y. Jin, D. Park, Y. Y. Lee, M. H. son, D. Ahn,” Temperature Dependent Study of Random telegraph Noise in Gate-All-Around PMOS Silicon Nanowire Field-Effect Transistors”, IEEE, pp. 754 –758, Nov. 2010.
    [17]Jue Yang, Xinrong Li, “Design and Implementation of Low-Power Wireless Sensor Networks for Environmental Monitoring”, WCNIS, pp. 593 – 597, June 2010.
    [18]G. E. Perlin, A. M. Sodagar, K. D. Wise, “Neural Recording Front-End Designs for Fully Implantable Neuroscience Applications and Neural Prosthetic Microsystems”, Engineering in Medicine and Biology Society, IEEE, pp. 2982 – 2985, Aug.30 2006 – Sept. 3 2006.
    [19]Young Chang Jo, Kun Nyun Kim, Tae Yang Nam, “Low Power Capacitive Humidity Sensor Readout IC With on-chip Temperature Sensor and Full Digital Output for USN Applications”, Sensor, IEEE, pp. 1354 – 1357, Oct. 2009.
    [20]Jianqin Qian, Jia Chen, Chun Zhang, Liji Wu, “Design of a 0.8V Low Power CMOS Temperature Sensor for RFID-based Train Axle Temperature Measurement”, ICSICT, pp. 1404 – 1406, Nov. 2010.
    [21]Zhen Fang, Zhan Zhao, Huanhuan Zeng, Qi Wang, Haifeng Dong, Peng Guo, Yuguo Zhang, ”Ultra-Low Power WSN Node with Integrated THP Sensor”, Nano/Micro Engineered and Molecular Systems, IEEE, pp. 813 – 816, Jan. 2008.
    [22]Wooyoung Jung, Sungmin Hong, Minkeun Ha, Young Joo Kim, Daeyoung Kim, “SSL-Based Lightweight Security of IP-Based Wireless Sensor Networks”, Advanced Information Networking and Applications Workshops, WAINA, pp. 1112 – 1117, Jan. 2008.
    [23]Zhou Shenghua, Wu Nanjian, “A Novel Ultra Low Power Temperature Sensor for UHF RFID Tag Chip”, ASSCC, pp. 464 – 467, Nov. 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE