研究生: |
廖家宏 Liao, Chia-Hung |
---|---|
論文名稱: |
創新進氣結構氣浮平台之設計與分析 Design and Analysis of an Air Floating Table with Novel Injection Patterns |
指導教授: |
楊鏡堂
Yang, Jing-Tang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 137 |
中文關鍵詞: | 氣浮 、氣靜壓軸承 、氣體潤滑 、面板傳輸 、搬運系統 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文旨在設計高穩定度及高抗震性之氣浮平台,提出創新進氣結構設計,特點在節流器及氣袋的結合使用,氣體流經節流器形成壓力降,當承載高度改變時流阻會產生變化,節流器可根據外部負載變化,自行調節氣墊層內之壓力,以提昇平台的抗震效果。平台性能的檢驗方式是運用暫態模擬加入應力模組及網格變形模組,將平台類比成單自由度低阻尼的自由振動系統。從位移應答(response)曲線可得知承載高度、阻尼比與最大振幅差,藉此推估平台承載性能。實驗部分則進行承載高度量測進而與模擬結果相互比對,得知模擬結果趨勢正確。本文設計三種創新進氣幾何結構:NPAT1節流器孔徑與氣袋深度最小;NPAT次之,NPAT2最大。歸納結果顯示:承載高度與供氣速度及節流器孔徑有關,若節流器孔徑太大會喪失節流功能,承載高度則由供氣速度主導。阻尼比分析顯示:NPATI及NPVT1因節流器孔徑尺寸最小阻尼比最大;創新進氣導管NPAT1及NPVT1較佳操作條件是供氣速度為0.50~1.25 m/s及3.75~4.00 m/s, NPVT1阻尼比最多可提昇約34.1%,性能表現卓越。最大振幅差則受供氣速度、節流器孔徑及收縮係數的影響,供應氣體速度增加,最大振幅差增加,在供氣速度為3.75~4.00 m/s,NPAT1最大振幅差最多可降低約42.0%。增設抽氣裝置有助於提升承載性能, NPVT1比NPAT1減小約8~18 之最大振幅差。綜合結果說明附有創新進氣結構之氣浮平台對承載特性有正面的成效,驗證靜壓氣體軸承設計理念可有效提昇平台承載性能。
R. Adin, Y. Yassour, 2005, “System and methods for imaging employing a levitating conveyor,” US Patent 2005/6810297.
R. A. Bergman, 1982, “Method for transferring a workpiece in an air float system,” US Patent 1982/4359309.
A. Baker, J. Sanders, 1999, “Fluid mechanics analysis of a spring-loaded jet injector,” IEEE Transctions on Biomedical Engineering, Vol. 46, No. 2, pp. 235 -242.
R. F. Berry, 1975, “Conveying sheet material,” US Patent 1975/3866906.
ESI US R&D, Inc, CFD-ACE+TM V2004 Modules Manual, 2004.
ESI US R&D, Inc, CFD-ACE+TM V2004 User Manual, 2004.
C. R. Chiang, 2006, “Thermal mismatch stress of a spherical inclusion in a cubic crystal,” Journal of Fracture, Vol. 25, No. 2, pp. 313-317.
K. C. Fan, C. C. Ho, J. I. Mou, 2002, “Development of a multiple-microhole aerostatic air bearing system, ” Journal of Micromechanics and Microengineering, Vol. 12, pp. 636–643.
H. M. Huang, M. S. Wang, S. Y. Lee, C. Y. Yeh, 2001, “Dynamic behavior assessment of human teeth: an in vivo study,” Journal of Medical and Biological Engineering, Vol. 21, pp. 155-160.
J. K. Hassan, J. A. Paivanas, 1981, “Contactless air film lifting device,” US Patent 1981/4257637.
T. Hayashi, 2002, “Flat panel carrying system,” JAPAN Patent 2002/2002-308422.
M. Hoetzl, J. E. Schmidt, 1994, “Pressure pad for stably floating thin strip,” US Patent 1994/5320329.
M. Hoetzl, T. A. Dunifon, L. L. Rozevink, 2003, “Glass transportation system,” US Patent 2003/6505483 B1.
K. Ishibashi, 2005, “Substrate conveying apparatus,” JAPAN Patent 2005/2005-154040.
S. Kobayashi, 1993, “Cleaning and carrying device for planar substrate and device array thereof,” JAPAN Patent 1993/05-275404.
G. A. Koss, 1978, “Gas table,” US Patent 1978 /4123113.
H. G. Lee, D. G. Lee, 2006, “Design of a large panel handling air conveyer with minimum air consumption,” Journal of Machanism and Machine Theory, Vol. 41, pp. 790-806.
D. Levin, Y. Yassour, 2003, “Apparatus for inducing forces by fluid injection,” US Patent 2003/6523572 B1.
D. Levin, Y. Yassour, 2003, “Self-adaptive vacuum gripping system,” US Patent 2003/6644703 B1.
M. Mori, 2003, “Floating equipment for floating flat panel by relatively high pressure zone between plate and flat panel,” JAPAN Patent 2003/2003-321119.
N. Nagurana, S. Hamanaka, 2003, “Thin plate conveying system and apparatus,” JAPAN Patent 2003/2003-063643.
A. G. Naaum, G. K. Lewis, 1980, “The steady performance of externally pressurized porous rectangular pad gas bearings incorporating viscous and inertia dominated flow,” Journal of Mechanical Engineering Science, Vol. 22, pp. 203-205.
S. Rao, 2004, Mechanical vibrations, Pearson Education, Inc. pp. 139-156.
S. L. Seymour, 1984, “Support for hot glass sheets of non-rectangular outline prior to bending,” US Patent 1984 /4432782.
O. Shinohara, 2004, “Non-contact floating unit,” JAPAN Patent 2004/2004-352375.
O. Siniaguine, G. Steinberg, 2000, “Non-contact holder for wafer-like articles,” US Patent 2000/6099056.
Y. Tadashi, S. Takao, S. Yoshito, 1994, “Floatation pressure pad for metal strips,” US Patent 1994/5360203.
D. Wilde, H. Ross, S. Jack, 1969, “Apparatus for transporting glass sheets on a gas module bed,” US Patent 1969/3473910.
S. Yamada, N. Oshima, K. Hoten, 2006, “Object floating unit and object floating device,” JAPAN Patent 2006/2006-008350.
M. Yasuda, Y. Sato, N. Fujisaki, 2004, “Substrate inspection device,” JAPAN Patent 2004/2004-279335.
十合晉一, 賴耿陽譯著, 1985, 氣體軸承—從設計到製造, 復漢出版社, pp. 1-16.
北澤保良, 2006, “基板搬入搬出裝置、基板搬運方法及其裝置,” 中華民國專利, 2006/I253433.
李世昭, 2002, 背向階梯流場模態與側向噴流混合效應之大渦模擬分析, 國立清華大學動力機械工程學系, 碩士論文
李克讓, 1978, 磨潤工程, 機械工程師手冊, 中國機械工程學會
李昌夏, 曹其成, 金聖撤, 金昔俊, 2004, “玻璃基板之移送系統,” 中華民國專利, 2004/ I232838.
李昌夏, 曹其成, 金聖撤, 斐瓊采, 黃正勳, 2004, “玻璃基板之檢查系統,” 中華民國專利, 2004/ I250277.
李炳寰, 蘇榮瑞, 葉公旭, 蔡友諒, 張志逢, 2004, “氣浮式液晶基板運輸承載裝置,” 中華民國專利, 2004/ 581107.
坪田龍介, 石田浩史, 福間邦夫, 2006, “基板搬運裝置,” 中華民國專利, 2006/200621608.
黃錦煒, 2004, “氣浮式玻璃基板輸送裝置,” 中華民國專利, 2004/M282318.
蔡鴻儒, 陳建中, 鄭景鴻, 2004, “氣浮平台及具有該平台的氣浮裝置,” 中華民國專利, 2004/M288004.
賴耿陽, 1985, 氣體軸承-從設計到製造, 復漢出版社, pp. 13-83.
劉暾, 劉育華, 陳世杰, 1990, 靜壓氣體潤滑, 哈爾濱工業大學出版社, pp. 122-153.
羅思湧, 2001, “基板氣浮式載台之結構改良,” 中華民國專利, 2001/463689.