簡易檢索 / 詳目顯示

研究生: 陳翰儀
Chen, Han-Yi
論文名稱: 以摻雜銦之三氧化鉬做為P型透明導電氧化物及固態染料敏化太陽能電池之電洞傳輸層
Indium-doped Molybdenum Oxide as a New P-type Transparent Conductive Oxide and Hole Transport Layer for Solid-State Dye-Sensitized Solar Cells
指導教授: 游萃蓉
Yew, Tri-Rung
口試委員: 李紫原
林俊榮
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 94
中文關鍵詞: 透明導電氧化物奈米線非晶薄膜三氧化鉬太陽能電池
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究開發一種新型的p-type透明導電氧化物材料,MoO3:In單晶奈米線以及非晶型薄膜。奈米線以及非晶型薄膜皆呈現高光學穿透率,在可見光範圍內(波長400–800 nm),80 nm厚之薄膜,其光學穿透率為80–88%,且奈米線之最低電阻率可到達5.98 × 10-4 Ω-cm,適合光電元件之應用。非晶型薄膜亦可沉積在聚亞醯胺(polyimide, PI)軟性基板上,雖撓曲多次後,仍呈現優良之電性。此外,本研究亦製備p-MoO3:In/i-ZnO/n-AZO元件,並驗證MoO3:In應用在全透光軟性電子元件上之可行性。
    本研究第二部分為利用所開發之MoO3:In單晶奈米線做為固態染料敏化太陽能電池(solid-state dye-sensitized solar cells, SS-DSSCs)之電洞傳輸層。MoO3:In奈米線可增加與二氧化鈦(TiO2)奈米顆粒之表面接觸面積。本實驗利用各種溶液法(solution-processing)將TiO2奈米顆粒填充於MoO3:In奈米線之間。此外,摻雜In於MoO3奈米線可改善電洞載子濃度、降低費米能階並增加SS-DSSCs中之開路電壓。


    New p-type transparent conductive oxide materials, MoO3:In single crystal nanowires and amorphous films, were synthesized in this work. Both nanowires and amorphous films exhibit high optical transmittance, 80–88% for 80 nm thick films at 400–800 nm wavelength, and low resistivity (down to 5.98 × 10-4 Ω-cm) suitable for photovoltaic device applications. The amorphous films were also deposited on flexible polyimide substrates and exhibit excellent electrical properties even after bending. Besides, p-MoO3:In/i-ZnO/n-AZO devices were fabricated to demonstrate the potential for all-transparent flexible electronic applications.
    MoO3:In nanowires were also used as hole transport layers for solid-state dye-sensitized solar cells (SS-DSSCs). The MoO3:In nanowires were used to increase the surface contact with dyed titanium dioxide nanoparticles so as to enhance the short circuit current of SS-DSSCs. Various methods of solution-processing were also used to fill titanium dioxide nanoparticles in MoO3:In nanowires. Besides, indium doping in MoO3 nanowires was utilized to improve the hole concentration and enhance the open voltage of SS-DSSCs.

    摘要……………………………………………………………………….i Abstract………………………………………………………………….ii 誌謝……………………………………………………………………...iii 目錄…………………………………………………………………….viii 圖目錄…………………………………………………………………..xii 表目錄……………………………………………………………….....xvi 第一章 研究目的………………………………………………………..1 1.1 研究背景…………………………………………………………….1 1.1.1 透明導電氧化物發展………………………………………...1 1.1.2 太陽能電池發展……………………………………………...1 1.2 研究動機…………………………………………………………….6 1.2.1 開發新型高透光低電阻率之p-type透明導電氧化物……….6 1.2.2 製作穩定性高的固態染料敏化太陽能電池………………...6 第二章 文獻探討與原理簡介………………………………………......8 2.1 透明導電氧化物………………………………………………….....8 2.1.1 光電性質……………………………………………………8 2.1.2 N-type TCO………………………………………………9 2.1.3 P-type TCO………………………………......................10 2.1.4 非晶型TCO發展與應用……………………………………11 2.1.5 奈米結構TCO發展與應用………………………………….11 2.2 固態染料敏化太陽能電池之發展(SS-DSSCs)…………………13 2.3 染料敏化太陽能電池(DSSCs)原理簡介……………………….....17 2.4 太陽能電池電性圖簡介…………………………………………...21 2.5 三氧化鉬的基本性質、合成方法及應用……………………….....25 2.6 摻雜銦之三氧化鉬原理…………………………………………...27 2.7 摻雜銦於三氧化鉬中蒸氣壓之理論計算………………………...29 第三章 實驗步驟與儀器簡介…………………………………………31 3.1 實驗流程…………………………………………………………...31 3.2 實驗步驟…………………………………………………………...35 3.2.1 以化學氣相沉積法成長摻雜銦之三氧化鉬奈米線及薄膜.35 3.2.2 成長摻雜銦之三氧化鉬薄膜於聚亞醯胺軟性基板上…….36 3.2.3 製作全透明p-i-n junction之電子元件……………………..37 3.2.4 固態染料敏化太陽能電池(SS-DSSCs)之製備…………….38 3.2.4.1 利用各種溶液法將TiO2奈米顆粒填充至MoO3:In奈米線上…………………………………...................38 3.2.4.2 組裝固態染料敏化太陽能電池……………………41 3.3 實驗儀器………………………………….......................................43 3.3.1 場發射掃描電子顯微鏡………………………………….....43 3.3.2 高解析度穿透式電子顯微鏡、能量散佈分析儀…………43 3.3.3 薄膜厚度輪廓量測儀………………………………….........44 3.3.4 霍爾效應量測系統………………………………….............45 3.3.5 X-ray光電子能譜………………………………...........45 3.3.6 低掠角X光繞射分析儀………………………………….....46 3.3.7 紫外/可見光吸收光譜儀…………………………………...46 3.3.8 紫外光光電子能譜儀………………………………………47 3.3.9 太陽能電池效率量測系統…………………………………47 第四章 結果與討論……………………………………………………49 4.1 製備最佳化之MoO3:In薄膜與奈米線及其應用…………………49 4.1.1 前驅物加熱溫度及基板溫度對電性之影響……………….50 4.1.2 SEM結構分析……………………………………………52 4.1.3 電性分析…………………………………………………….53 4.1.4 GIXRD結晶性分析……………………………………….....59 4.1.5 TEM結構及結晶性分析…………………………………….60 4.1.6 EDS成分分析…………………………………………….....62 4.1.7 XPS成分分析…………………………………………….....63 4.1.8 光學分析……………………………………………………65 4.1.9 MoO3:In於軟性電子之應用................................................70 4.1.10 MoO3:In於全透光電子元件之應用……………………….72 4.2 MoO3:In奈米線做為固態染料敏化太陽能電池之電洞傳輸層….73 4.2.1 利用各種溶液法將TiO2奈米顆粒填充至MoO3:In奈米線間 .............................................................................................73 4.2.2 固態染料敏化太陽能電池元件特性分析…………………78 第五章 結論…………………………………………………………....82 第六章 未來展望....................................................................................84 參考文獻………………………………………………………………86 本研究相關之發表……………………………………………………..94 圖目錄 圖2.1 液態DSSCs之剖面示意圖以及其所對應之能階圖,和運作原理之簡單反應式..........................................................................19 圖2.2 SS-DSSCs之剖面示意圖以及其所對應之能階圖,和運作原理之簡單反應式…………………………………………………..20 圖2.3 太陽能電池等效電路圖………………………………………...23 圖2.4 太陽能電池電性圖(J-V)…………..……………………………23 圖2.5 太陽光照度AM1.0、AM1.5之示意圖…………………………24 圖2.6 MoO3結構示意圖以及摻雜In原子後之結構示意圖………...27 圖2.7 以MoO3做為p-type電洞傳輸層之SS-DSSCs能階圖,以及欲摻雜之In2O3能階……………………………………………….28 圖3.1 以化學氣相傳輸法成長MoO3:In薄膜與奈米線,及其應用於軟性電子元件及全透明電子元件之實驗流程圖………………33 圖3.2 成長MoO3:In奈米線作為電洞傳輸層之固態染料敏化太陽能電池製作與量測之實驗流程圖………………………………..34 圖3.3以化學氣相傳輸法在爐管中成長MoO3:In薄膜與奈米線示意圖 ………………………………………………………………35 圖3.4 MoO3:In薄膜成長於polyimide軟性基板上,撓曲之示意圖.37 圖3.5 P-type MoO3:In/i-ZnO/n-type AZO全透明電子元件示意圖..38 圖3.6 以旋轉塗佈法將TiO2奈米顆粒填充於MoO3:In奈米線間示意圖………………………………………………………………..39 圖3.7 以浸泡加熱法將TiO2奈米顆粒填充於MoO3:In奈米線間示意圖………………………………………………………………..40 圖3.8 以自我組裝法將TiO2奈米顆粒填充於MoO3:In奈米線間示意圖………………………………………………………………..41 圖3.9以MoO3:In奈米線作為電洞傳輸層之固態染料敏化太陽能電池組裝流程圖……………………………………………………..42 圖4.1 前驅物加熱溫度727 □C成長於玻璃基板上之MoO3:In旋轉45˚ SEM影像,(a) Tsub = 450 □C成長之奈米線,(b) Tsub = 435 □C沉積之厚度150 nm之薄膜,(c) Tsub = 395 □C沉積80 nm厚之薄膜……………………………………………………………..57 圖4.2 不同In2O3前驅物重量百分比以及基板溫度與MoO3:In薄膜之(a) 電阻率,與(b) 電洞載子濃度之關係圖...............................56 圖4.3 單根MoO3:In奈米線之標準化之I-V曲線,其中SEM插圖為典型的奈米線量測架構………………………………………..58 圖4.4 MoO3:In奈米線與薄膜之低掠角X光繞射分析圖譜…….……59 圖4.5 (a) 45.65 wt % In2O3前驅物之MoO3:In奈米線之明場TEM影像。(b) MoO3:In奈米線放大之高解析度穿透式電子顯微鏡影像。(c) 與圖4.5b中相同之MoO3:In奈米線分析所得之選區電子繞射圖………………………………………………………..61 圖4.6 (a) MoO3:In奈米線之明場TEM影像,及其(b) Mo、(c) In、(d) O元素分佈……………………………………………………...62 圖4.7 MoO3:In奈米線之(a) Mo 3d、(b) In 3d、(c) O 1s之XPS光譜….64 圖4.8 成長在玻璃基板之MoO3:In薄膜與奈米線之(a)光學穿透率光譜、(b)吸收光譜及(c) (αhν)2-hν關係圖…………………….....66 圖4.9 MoO3:In薄膜之UPS光譜,其中插圖為框選部分之放大圖…...69 圖4.10 (a)鍍在黃色聚亞醯胺(polyimide, PI)基板上之MoO3:In非晶型薄膜。(b)鍍在PI軟板上之MoO3:In薄膜撓曲五次後之電阻率與曲率半徑,其中的插圖為薄膜撓曲之示意圖……………...71 圖4.11 由p-MoO3:In film/i-ZnO/n-AZO組成之(a) p-i-n異質結元件示意圖,以其(b)電流密度-電壓(J-V)曲線………………………72 圖4.12利用旋轉塗佈法將TiO2奈米顆粒填充於MoO3:In奈米線之間之(a) SEM圖,以及(b) SEM剖面圖…………………………..74 圖4.13利用浸泡加熱法將TiO2奈米顆粒填充於MoO3:In奈米線之間之SEM剖面圖…………………................................................75 圖4.14利用自我組裝法將TiO2奈米顆粒填充於MoO3:In奈米線之間之剖面示意圖……………………………….............................76 圖4.15 (a)利用自我組裝法將TiO2奈米顆粒直接成長於MoO3:In奈米線之間之SEM圖,(b)以旋轉塗佈法將TiO2膠體溶液在最上方成膜之SEM圖,以及(c)鍍上AZO電極後之SEM剖面圖 ………………………………………………………………77 圖4.16 以MoO3:In奈米線做為電洞傳輸層,並利用自我組裝法成長TiO2奈米顆粒於奈米線之間之SS-DSSCs電性圖………….80 圖4.17 以MoO3:In奈米線做為電洞傳輸層之SS-DSSCs能階圖…80 表目錄 表1.1 各種太陽能電池效率比較.............................................................3 表1.2 各種有機太陽能電池比較……………………………………….5 表3.1 在爐管內成長MoO3:In薄膜與奈米線之實驗條件…………...36 表4.1不同前驅物加熱溫度(Ts)及基板溫度(Tsub)下沉積之MoO3:In膜之霍爾效應量測電性..................................................................50 表4.2 經換算MoO3:In薄膜厚度後之MoO3:In、CuCrO2:Mg及CuxS電阻率及穿透率之比較。穿透率為在波長500 nm所量測之值 ...………………………………………………………………..68

    [1] J. Lewis, S. Grego, B. Chalamala, E.Vick, D. Temple, Applied Physics Letters, 2004, 85, 3450-3452.
    [2] A. Andersson, N. Johansson, P.Bröms, N. Yu, D. Lupo, W. R. Salaneck, Advanced Materials, 1998, 10, 859-863.
    [3] H. Kim, C. M. Gilmore, J. S. Horwitz, A. Pique´ , H. Murata, G. P. Kushto, R. Schlaf, Z. H. Kafafi, D. B. Chrisey, Applied Physics Letters, 2000, 76, 259-261.
    [4] D. M. Chapin, C. S. Fuller, G.L. Pearson, Journal of Applied Physics, 1954, 25, 676-677.
    [5] A. Goetzberger, C. Hebling, H-W. Schock, Materials Science and Engineering R, 2003, 40, 1-46.
    [6] Website, http://zh.wikipedia.org/wiki/
    [7] J. Zhao, A. Wang, M. A. Green, Progress in Photovoltaics: Research and Applications, 1999, 7, 471-474.
    [8] D. E. Carlson, C. R. Wronski, Applied Physics Letters, 1976, 28, 671-673.
    [9] R. B. Bergmann, T. J. Rinke, C. Berge, J. Schmidt, J. H. Werner, Technical Digest, PVSEC-12, Chefju Island, Korea, 2001, 11–15.
    [10] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, Progress in Photovoltaics: Research and Applications, 2010, 18, 144-150.
    [11] M.Grätzel, B. O’Regan, Nature, 1991, 353, 737-740.
    [12] L. Han, A. Fukui, N. Fuke, N. Koide, R. Yamanaka, 4th World Conference on Photovoltaic Energy Conversion (WCEP-4), 2006.
    [13] Website, http://www.konarka.com.
    [14] C. W. Tang, Applied Physics Letters, 1986, 48, 183.
    [15] Z. T. Liu, M. F. Lo, H. B. Wang, T. W. Ng, Applied Physics Letters, 2009, 95, 093307-1~093307-3.
    [16] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science, 1995, 270, 1789-1791.
    [17] B. Li, L. Wang, B. Kang, P. Wang, Y. Qiu, Solar Energy Materials & Solar Cells, 2006, 90, 549–573.
    [18] 陳璟鋒,國立成功大學材料科學與工程學系碩士論文,P型氧化鎳薄膜之製備與其光性、電性及材料特性之研究,2004。
    [19] K. Bädeker, Ann. Physik, Work performed at Universität Leipzig as Bädeker’s habilitation thesis, 1907, 327, 749-766.
    [20] A. N. Banerjee, K.K. Chattopadhyay, Progress in Crystal Growth and Characterization of Materials, 2005, 50, 52-105.
    [21] H. Sato, T. Minami, S. Takata, T. Yamada, Thin Solid Films, 1993, 236, 27-31.
    [22] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, Nature, 1997, 389, 939-942.
    [23] K. Ueda, T. Hase, H. Yanagi, H. Kawazoe, H. Hosono, H. Ohta, M. Orita, M. Hirano, Journal of Applied Physics, 2001, 89, 1790-1793.
    [24] R. Nagarajan, A. D. Draeseke, A. W. Sleight, J. Tate, Journal of Applied Physics, 2001, 89, 8022-8025.
    [25] B. J. Ingram, B. J. Harder, N. W. Hrabe, T. O. Mason, Chemistry of Materials, 2004, 16, 5623-5629.
    [26] B. Roy, J. D. Perkin, T. Kaydanova, D. L. Young, M. Taylor, A. Miedaner, C. Curtis, H.-J. Kleebe, D. W. Readey, D. S. Ginley, Thin Solid Films, 2008, 516, 4093-4101.
    [27] C. W. Teplin, T. Kaydanova, D. L. Young, J. D. Perkins, D. S. Ginley, A. Ode, D. W. Readey, Applied Physics Letters, 2004, 85, 3789-3791.
    [28] D. O. Scanlon, G. W. Watson, Chemistry of Materials, 2009, 21, 5435-5442.
    [29] H. Hirose, K. Ueda, H. Kawazoe, H. Hosono, Chemistry of Materials, 2002, 14, 1037-1047.
    [30] A. Subrahmanyam, U. K. Barik, Journal of Physics and Chemistry of Solids, 2005, 66, 817-822.
    [31] S. Golshah, S. M. Rozati, R. Martins, E. Fortunato, Thin Solid Films, 2009, 518, 1149-1152.
    [32] P. Parreira, G. Lavareda, J. Valente, F. T. Nunes, A. Amaral, C. Nunes de Carvalho, Physica Status Solidi A, 2010, 207, 1652-1654.
    [33] D. C. Paine, T. Whitson, D. Janiac, R. Beresford, C. Ow-Yang, B. Lewis, Journal of Applied Physics, 1999, 85, 8445-8450.
    [34] M. Orita, H. Ohta, M. Hirano, S. Narushima, H. Hosono, Philosophical Magazine Part B, 2001, 81, 501-515.
    [35] J. D. Perkins, J. A. del Cueto, J. L. Alleman, C. Warmsingh, B. M. Keyes, L. M. Gedvilas, P. A. Parilla, B. To, D. W. Readey, D. S. Ginley, Thin Solid Films, 2002, 411, 152-160.
    [36] S. Narushima, H. Mizoguchi, K. Shimizu, K. Ueda, H. Ohta, M. Hirano, T. Kamiya, H. Hosono, Advanced Materials, 2003, 15, 1409-1413.
    [37] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, Y. Yan, Advanced Materials, 2003, 15, 353-389.
    [38] W. P. Zheng, R. D. Zu, L. W. Zhong, Science, 2001, 291, 1947-1949.
    [39] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science, 2001, 292, 1897-1899.
    [40] Q. Wan, E. N. Dattoli, W. Y. Fung, W. Guo, Y. Chen, X. Pan, W. Lu, Nano Letters, 2006, 6, 2909-2915.
    [41] D. Lin, H. Wu, W. Pan, Advanced Materials, 2007, 19, 3968-3972.
    [42] K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda, K. G. U. Wijayantha, V. P. S. Perera, Journal of Physics. D, Applied Physics, 1998, 31, 1492-1496.
    [43] V. P. S. Perera, K. Tennakone, Solar Energy Mateials and Solar Cells, 2003, 79, 249-255.
    [44] B. O'Regan, F. Lenzmann, R. Muis, J. Wienke, Chemistry of Materials, 2002, 14, 5023-5029.
    [45] G. R. R. A. Kumara, A. Konno, S. Kaneko, 16th International Conference of Photochemical Conversion and Solar Storage, Uppsala, Sweden. 2006, W4-P-45.
    [46] B. Li, L. Wang, B. Kang, P. Wang, Y. Qiu, Solar Energy Materials & Solar Cells, 2006, 90, 549-573.
    [47] J. Bandara, J. P. Yasomanee, Semiconductor Science and Technology, 2007, 22, 20-24.
    [48] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, Nature, 1998, 395, 583-585.
    [49] J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, Applied Physics Letters, 2001, 79, 2085-2087.
    [50] Jessica Krüger, R. Plass, M. Grätzel, Applied Physics Letters, 2002, 81, 367-369.
    [51] H. J. Snaith, A. J. Moule, C. Klein, K. Meerholz, R. H. Friend, M. Gra1tzel, Nano Letters, 2007, 7, 3372-3376.
    [52] K. Murakoshi, R. Kogure, Y. Wada, S. Yanagida, Solar Energy Materials & Solar Cells, 1998, 55, 113-125.
    [53] K. Tennakone, G. K. R. Senadeera, V. P. S. Perera, I. R. M. Kottegoda, and L. A. A. de Silva, Chemistry of Mateials, 1999, 11, 2474-2477.
    [54] Y. Saito, T. Kitamura, Y. Wada, S. Yanagida, Synthetic Metals, 2002, 131, 185-187.
    [55] Y. Saito, N. Fukuri, R. Senadeera, T. Kitamura, Y. Wada, S. Yanagida, Electrochemistry Communications, 2004, 6, 71-74.
    [56] S. A. Haque, E. Palomares, H. M. Upadhyaya, L. Otley, R. J. Potter, A. B. Holmesc, J. R. Durrant, Chemical Communications, 2003, 3008-3009.
    [57] H. Wang, H. Li, B. Xue, Z. Wang, Q. Meng, L. Chen, Journal of the Chemical Society, 2005, 127, 6394-6401.
    [58] A. Luque, S. Hegedus, Handbook of Photovoltaic Science and Engineering, 2003, 703-703.
    [59] JCPDF 05-0508
    [60] Wikipedia,http://zh.wikipedia.org/zh-tw/
    [61] D. W. Zhao, X. W. Sun, C. Y. Jiang, A. K. K. Kyaw, G. Q. Lo, and D. L. Kwong, Applied Physics Letters, 2002, 93, 083305-1~083305-3.
    [62] J. Li, P. Wei, J. Chen, L. Rongti, Journal of the American Ceramic Society, 2002, 85, 2116-2118.
    [63] Y. B. Li, Y. Bando, D. Golberg, K. Kurashima, Applied Physics Letters, 2002, 81, 5048-5050.
    [64] 廖家慶,清華大學碩士論文,氧化鉬奈米線製備及其在電致色變元件上的應用,2002。
    [65] 張宮賓,清華大學碩士論文,藉微波電漿輔助化學氣相沈積系統研就氧化鉬奈米材料,2005。
    [66] M. S. Paul, Electrochromism Fundamentals and Applications, VCH, 1994.
    [67] E. R. Braithwaite, J. Haber, Molydenum: An Outline of its Chemistry and Uses, Elsevier Science Ltd, 1994, 1-680.
    [68] C. Imawan, H. Steffes, F. Solzbacher, E. Obermeier, Sensors and Actuators B, 2001, 78, 119-125.
    [69] M. Ferroni, V. Guidi, G. Martinelli, M. Sacerdoti, P. Nelli, G. Sberveglieri, Sensors and Actuators B, 1998, 48, 285-288.
    [70] D. Mutschall, K. Holzner, E. Obermeier, Sensors and Actuators B, 1996, 36, 320-324.
    [71] N. Tokmoldin, N. Griffiths, D. D. C. Bradley, S. A. Haque, Advanced Materials, 2009, 21, 3475-3478.
    [72] K. S. Yook, S. O. Jeon, S. Y. Min, J. Y. Lee, H. J. Yang, T. Noh, S. K. Kang, T. W. Lee, Advanced Functional Materials, 2010, 20, 1797-1802.
    [73] A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, D. L. Kwong, Applied Physics Letters, 2008, 93, 221107-1~221107-3.
    [74] S. Ito, T. Kitamura, Y. Wada, S. Yanagida, Solar Energy Materials and Solar Cells, 2003, 76, 3-13.
    [75] 謝毅勳,國立聯合大學電子工程學系碩士論文,應用於固態染料敏化太陽能電池之P型半導體氧化物製備與量測,2008。
    [76] D. Ginley, B. Roy, A. Ode, C. Warmsingh, Y. Yoshida, P. Parilla, C. Teplin, T. Kaydanova, A. Miedaner, C. Curtis, A. Martinson, T. Coutts, D. Readey, H. Hosono, J. Perkins, Thin Solid Films, 2003, 445, 193-198.
    [77] S. Y. Sun, J. L. Huang, D. F. Lii, Journal of Vacuum Science & Technology A, 2004, 22, 1235-1241.
    [78] S. H. Wei, S. B. Zhang, Physical Review B, 2002, 66, 155211-155220.
    [79] A. M. Beccatia, G. Castello, G. Poggi, British Corrosion Journal, 1995, 30, 283-287.
    [80] E. Miyaki, I. Kojima, M. Orita, Bulletin of the Chemical Society Japan, 1986, 59, 689-695.
    [81] C. Körber, V. Krishnakumar, A. Klein, G. Panaccione, P. Torelli, A. Walsh, J. L. F. da Silva, S. H. Wei, R. G. Egdell, D. J. Payne, Physical Review B, 2010, 81, 165207-1~165207-9.
    [82] D. Briggs, M. P. Seah, Practical Surface Analysis, John Wiley & Sons, 1993, 1, second edition.
    [83] B. Yea, H. Sasaki, T. Osaki, K. Sughara, R. Konishi, Japanese Journal of Applied Physics, 1999, 38, 2103-2107.
    [84] H. Yanagi, H. Kawazoe, A. Kudo, M. Yasukawa, H. Hosono, Journal of Electroceramics, 2000, 4, 407.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE