研究生: |
陳翰儀 Chen, Han-Yi |
---|---|
論文名稱: |
以摻雜銦之三氧化鉬做為P型透明導電氧化物及固態染料敏化太陽能電池之電洞傳輸層 Indium-doped Molybdenum Oxide as a New P-type Transparent Conductive Oxide and Hole Transport Layer for Solid-State Dye-Sensitized Solar Cells |
指導教授: |
游萃蓉
Yew, Tri-Rung |
口試委員: |
李紫原
林俊榮 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 透明導電氧化物 、奈米線 、非晶薄膜 、三氧化鉬 、太陽能電池 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究開發一種新型的p-type透明導電氧化物材料,MoO3:In單晶奈米線以及非晶型薄膜。奈米線以及非晶型薄膜皆呈現高光學穿透率,在可見光範圍內(波長400–800 nm),80 nm厚之薄膜,其光學穿透率為80–88%,且奈米線之最低電阻率可到達5.98 × 10-4 Ω-cm,適合光電元件之應用。非晶型薄膜亦可沉積在聚亞醯胺(polyimide, PI)軟性基板上,雖撓曲多次後,仍呈現優良之電性。此外,本研究亦製備p-MoO3:In/i-ZnO/n-AZO元件,並驗證MoO3:In應用在全透光軟性電子元件上之可行性。
本研究第二部分為利用所開發之MoO3:In單晶奈米線做為固態染料敏化太陽能電池(solid-state dye-sensitized solar cells, SS-DSSCs)之電洞傳輸層。MoO3:In奈米線可增加與二氧化鈦(TiO2)奈米顆粒之表面接觸面積。本實驗利用各種溶液法(solution-processing)將TiO2奈米顆粒填充於MoO3:In奈米線之間。此外,摻雜In於MoO3奈米線可改善電洞載子濃度、降低費米能階並增加SS-DSSCs中之開路電壓。
New p-type transparent conductive oxide materials, MoO3:In single crystal nanowires and amorphous films, were synthesized in this work. Both nanowires and amorphous films exhibit high optical transmittance, 80–88% for 80 nm thick films at 400–800 nm wavelength, and low resistivity (down to 5.98 × 10-4 Ω-cm) suitable for photovoltaic device applications. The amorphous films were also deposited on flexible polyimide substrates and exhibit excellent electrical properties even after bending. Besides, p-MoO3:In/i-ZnO/n-AZO devices were fabricated to demonstrate the potential for all-transparent flexible electronic applications.
MoO3:In nanowires were also used as hole transport layers for solid-state dye-sensitized solar cells (SS-DSSCs). The MoO3:In nanowires were used to increase the surface contact with dyed titanium dioxide nanoparticles so as to enhance the short circuit current of SS-DSSCs. Various methods of solution-processing were also used to fill titanium dioxide nanoparticles in MoO3:In nanowires. Besides, indium doping in MoO3 nanowires was utilized to improve the hole concentration and enhance the open voltage of SS-DSSCs.
[1] J. Lewis, S. Grego, B. Chalamala, E.Vick, D. Temple, Applied Physics Letters, 2004, 85, 3450-3452.
[2] A. Andersson, N. Johansson, P.Bröms, N. Yu, D. Lupo, W. R. Salaneck, Advanced Materials, 1998, 10, 859-863.
[3] H. Kim, C. M. Gilmore, J. S. Horwitz, A. Pique´ , H. Murata, G. P. Kushto, R. Schlaf, Z. H. Kafafi, D. B. Chrisey, Applied Physics Letters, 2000, 76, 259-261.
[4] D. M. Chapin, C. S. Fuller, G.L. Pearson, Journal of Applied Physics, 1954, 25, 676-677.
[5] A. Goetzberger, C. Hebling, H-W. Schock, Materials Science and Engineering R, 2003, 40, 1-46.
[6] Website, http://zh.wikipedia.org/wiki/
[7] J. Zhao, A. Wang, M. A. Green, Progress in Photovoltaics: Research and Applications, 1999, 7, 471-474.
[8] D. E. Carlson, C. R. Wronski, Applied Physics Letters, 1976, 28, 671-673.
[9] R. B. Bergmann, T. J. Rinke, C. Berge, J. Schmidt, J. H. Werner, Technical Digest, PVSEC-12, Chefju Island, Korea, 2001, 11–15.
[10] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, Progress in Photovoltaics: Research and Applications, 2010, 18, 144-150.
[11] M.Grätzel, B. O’Regan, Nature, 1991, 353, 737-740.
[12] L. Han, A. Fukui, N. Fuke, N. Koide, R. Yamanaka, 4th World Conference on Photovoltaic Energy Conversion (WCEP-4), 2006.
[13] Website, http://www.konarka.com.
[14] C. W. Tang, Applied Physics Letters, 1986, 48, 183.
[15] Z. T. Liu, M. F. Lo, H. B. Wang, T. W. Ng, Applied Physics Letters, 2009, 95, 093307-1~093307-3.
[16] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science, 1995, 270, 1789-1791.
[17] B. Li, L. Wang, B. Kang, P. Wang, Y. Qiu, Solar Energy Materials & Solar Cells, 2006, 90, 549–573.
[18] 陳璟鋒,國立成功大學材料科學與工程學系碩士論文,P型氧化鎳薄膜之製備與其光性、電性及材料特性之研究,2004。
[19] K. Bädeker, Ann. Physik, Work performed at Universität Leipzig as Bädeker’s habilitation thesis, 1907, 327, 749-766.
[20] A. N. Banerjee, K.K. Chattopadhyay, Progress in Crystal Growth and Characterization of Materials, 2005, 50, 52-105.
[21] H. Sato, T. Minami, S. Takata, T. Yamada, Thin Solid Films, 1993, 236, 27-31.
[22] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, Nature, 1997, 389, 939-942.
[23] K. Ueda, T. Hase, H. Yanagi, H. Kawazoe, H. Hosono, H. Ohta, M. Orita, M. Hirano, Journal of Applied Physics, 2001, 89, 1790-1793.
[24] R. Nagarajan, A. D. Draeseke, A. W. Sleight, J. Tate, Journal of Applied Physics, 2001, 89, 8022-8025.
[25] B. J. Ingram, B. J. Harder, N. W. Hrabe, T. O. Mason, Chemistry of Materials, 2004, 16, 5623-5629.
[26] B. Roy, J. D. Perkin, T. Kaydanova, D. L. Young, M. Taylor, A. Miedaner, C. Curtis, H.-J. Kleebe, D. W. Readey, D. S. Ginley, Thin Solid Films, 2008, 516, 4093-4101.
[27] C. W. Teplin, T. Kaydanova, D. L. Young, J. D. Perkins, D. S. Ginley, A. Ode, D. W. Readey, Applied Physics Letters, 2004, 85, 3789-3791.
[28] D. O. Scanlon, G. W. Watson, Chemistry of Materials, 2009, 21, 5435-5442.
[29] H. Hirose, K. Ueda, H. Kawazoe, H. Hosono, Chemistry of Materials, 2002, 14, 1037-1047.
[30] A. Subrahmanyam, U. K. Barik, Journal of Physics and Chemistry of Solids, 2005, 66, 817-822.
[31] S. Golshah, S. M. Rozati, R. Martins, E. Fortunato, Thin Solid Films, 2009, 518, 1149-1152.
[32] P. Parreira, G. Lavareda, J. Valente, F. T. Nunes, A. Amaral, C. Nunes de Carvalho, Physica Status Solidi A, 2010, 207, 1652-1654.
[33] D. C. Paine, T. Whitson, D. Janiac, R. Beresford, C. Ow-Yang, B. Lewis, Journal of Applied Physics, 1999, 85, 8445-8450.
[34] M. Orita, H. Ohta, M. Hirano, S. Narushima, H. Hosono, Philosophical Magazine Part B, 2001, 81, 501-515.
[35] J. D. Perkins, J. A. del Cueto, J. L. Alleman, C. Warmsingh, B. M. Keyes, L. M. Gedvilas, P. A. Parilla, B. To, D. W. Readey, D. S. Ginley, Thin Solid Films, 2002, 411, 152-160.
[36] S. Narushima, H. Mizoguchi, K. Shimizu, K. Ueda, H. Ohta, M. Hirano, T. Kamiya, H. Hosono, Advanced Materials, 2003, 15, 1409-1413.
[37] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, Y. Yan, Advanced Materials, 2003, 15, 353-389.
[38] W. P. Zheng, R. D. Zu, L. W. Zhong, Science, 2001, 291, 1947-1949.
[39] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science, 2001, 292, 1897-1899.
[40] Q. Wan, E. N. Dattoli, W. Y. Fung, W. Guo, Y. Chen, X. Pan, W. Lu, Nano Letters, 2006, 6, 2909-2915.
[41] D. Lin, H. Wu, W. Pan, Advanced Materials, 2007, 19, 3968-3972.
[42] K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda, K. G. U. Wijayantha, V. P. S. Perera, Journal of Physics. D, Applied Physics, 1998, 31, 1492-1496.
[43] V. P. S. Perera, K. Tennakone, Solar Energy Mateials and Solar Cells, 2003, 79, 249-255.
[44] B. O'Regan, F. Lenzmann, R. Muis, J. Wienke, Chemistry of Materials, 2002, 14, 5023-5029.
[45] G. R. R. A. Kumara, A. Konno, S. Kaneko, 16th International Conference of Photochemical Conversion and Solar Storage, Uppsala, Sweden. 2006, W4-P-45.
[46] B. Li, L. Wang, B. Kang, P. Wang, Y. Qiu, Solar Energy Materials & Solar Cells, 2006, 90, 549-573.
[47] J. Bandara, J. P. Yasomanee, Semiconductor Science and Technology, 2007, 22, 20-24.
[48] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, Nature, 1998, 395, 583-585.
[49] J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, Applied Physics Letters, 2001, 79, 2085-2087.
[50] Jessica Krüger, R. Plass, M. Grätzel, Applied Physics Letters, 2002, 81, 367-369.
[51] H. J. Snaith, A. J. Moule, C. Klein, K. Meerholz, R. H. Friend, M. Gra1tzel, Nano Letters, 2007, 7, 3372-3376.
[52] K. Murakoshi, R. Kogure, Y. Wada, S. Yanagida, Solar Energy Materials & Solar Cells, 1998, 55, 113-125.
[53] K. Tennakone, G. K. R. Senadeera, V. P. S. Perera, I. R. M. Kottegoda, and L. A. A. de Silva, Chemistry of Mateials, 1999, 11, 2474-2477.
[54] Y. Saito, T. Kitamura, Y. Wada, S. Yanagida, Synthetic Metals, 2002, 131, 185-187.
[55] Y. Saito, N. Fukuri, R. Senadeera, T. Kitamura, Y. Wada, S. Yanagida, Electrochemistry Communications, 2004, 6, 71-74.
[56] S. A. Haque, E. Palomares, H. M. Upadhyaya, L. Otley, R. J. Potter, A. B. Holmesc, J. R. Durrant, Chemical Communications, 2003, 3008-3009.
[57] H. Wang, H. Li, B. Xue, Z. Wang, Q. Meng, L. Chen, Journal of the Chemical Society, 2005, 127, 6394-6401.
[58] A. Luque, S. Hegedus, Handbook of Photovoltaic Science and Engineering, 2003, 703-703.
[59] JCPDF 05-0508
[60] Wikipedia,http://zh.wikipedia.org/zh-tw/
[61] D. W. Zhao, X. W. Sun, C. Y. Jiang, A. K. K. Kyaw, G. Q. Lo, and D. L. Kwong, Applied Physics Letters, 2002, 93, 083305-1~083305-3.
[62] J. Li, P. Wei, J. Chen, L. Rongti, Journal of the American Ceramic Society, 2002, 85, 2116-2118.
[63] Y. B. Li, Y. Bando, D. Golberg, K. Kurashima, Applied Physics Letters, 2002, 81, 5048-5050.
[64] 廖家慶,清華大學碩士論文,氧化鉬奈米線製備及其在電致色變元件上的應用,2002。
[65] 張宮賓,清華大學碩士論文,藉微波電漿輔助化學氣相沈積系統研就氧化鉬奈米材料,2005。
[66] M. S. Paul, Electrochromism Fundamentals and Applications, VCH, 1994.
[67] E. R. Braithwaite, J. Haber, Molydenum: An Outline of its Chemistry and Uses, Elsevier Science Ltd, 1994, 1-680.
[68] C. Imawan, H. Steffes, F. Solzbacher, E. Obermeier, Sensors and Actuators B, 2001, 78, 119-125.
[69] M. Ferroni, V. Guidi, G. Martinelli, M. Sacerdoti, P. Nelli, G. Sberveglieri, Sensors and Actuators B, 1998, 48, 285-288.
[70] D. Mutschall, K. Holzner, E. Obermeier, Sensors and Actuators B, 1996, 36, 320-324.
[71] N. Tokmoldin, N. Griffiths, D. D. C. Bradley, S. A. Haque, Advanced Materials, 2009, 21, 3475-3478.
[72] K. S. Yook, S. O. Jeon, S. Y. Min, J. Y. Lee, H. J. Yang, T. Noh, S. K. Kang, T. W. Lee, Advanced Functional Materials, 2010, 20, 1797-1802.
[73] A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, D. L. Kwong, Applied Physics Letters, 2008, 93, 221107-1~221107-3.
[74] S. Ito, T. Kitamura, Y. Wada, S. Yanagida, Solar Energy Materials and Solar Cells, 2003, 76, 3-13.
[75] 謝毅勳,國立聯合大學電子工程學系碩士論文,應用於固態染料敏化太陽能電池之P型半導體氧化物製備與量測,2008。
[76] D. Ginley, B. Roy, A. Ode, C. Warmsingh, Y. Yoshida, P. Parilla, C. Teplin, T. Kaydanova, A. Miedaner, C. Curtis, A. Martinson, T. Coutts, D. Readey, H. Hosono, J. Perkins, Thin Solid Films, 2003, 445, 193-198.
[77] S. Y. Sun, J. L. Huang, D. F. Lii, Journal of Vacuum Science & Technology A, 2004, 22, 1235-1241.
[78] S. H. Wei, S. B. Zhang, Physical Review B, 2002, 66, 155211-155220.
[79] A. M. Beccatia, G. Castello, G. Poggi, British Corrosion Journal, 1995, 30, 283-287.
[80] E. Miyaki, I. Kojima, M. Orita, Bulletin of the Chemical Society Japan, 1986, 59, 689-695.
[81] C. Körber, V. Krishnakumar, A. Klein, G. Panaccione, P. Torelli, A. Walsh, J. L. F. da Silva, S. H. Wei, R. G. Egdell, D. J. Payne, Physical Review B, 2010, 81, 165207-1~165207-9.
[82] D. Briggs, M. P. Seah, Practical Surface Analysis, John Wiley & Sons, 1993, 1, second edition.
[83] B. Yea, H. Sasaki, T. Osaki, K. Sughara, R. Konishi, Japanese Journal of Applied Physics, 1999, 38, 2103-2107.
[84] H. Yanagi, H. Kawazoe, A. Kudo, M. Yasukawa, H. Hosono, Journal of Electroceramics, 2000, 4, 407.