研究生: |
沈威志 Wei Chih Shen |
---|---|
論文名稱: |
光鉗操控微生物蝕刻銅金屬 Etching Copper by Microbes under Optical Tweezers |
指導教授: |
賀陳弘
Hong Hocheng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 雷射光鉗 、微流道 、氧化亞鐵硫桿菌 、氧化硫硫桿菌 、微生物蝕刻 |
外文關鍵詞: | Laser Tweezers, Microfluidic Channel, Thiobacillus Ferrooxidans, Thiobacillus Thiooxidans, Microbe Machining |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
生物加工為微加工開啟了新的方向。目前半導體產業以銅製程為主,本研究即開發微生物在微加工的應用,使用微生物做為工具,對銅工件進行分解,並利用雷射光鉗及微流道來控制微生物的移動,形成加工位置。目前已有許多文獻指出氧化亞鐵硫桿菌、及氧化硫硫桿菌擁有運用在微生物蝕刻金屬上的潛力。在本研究中將會使用此兩種微生物來評估材料移除加工的表現,並量測金屬被移除的深度。本論文實驗分為三個部分:量測光鉗對此二菌的夾持效率、觀測Nd:YAG雷射對氧化硫硫桿菌的傷害,以及以光鉗抓取此二菌進行銅金屬加工。實驗結果發現,在雷射功率為450 mw輸出下光鉗對氧化硫硫桿菌及氧化亞鐵由桿菌之拖拉速度分別為 與 。而氧化硫硫桿菌在900 mw光鉗夾持下持續3小時,其活動力並未衰減;氧化硫硫桿菌在光鉗的挾持下仍對銅金屬有蝕刻能力,最大蝕刻深度為80 nm。Nd:YAG雷射在氧化亞鐵流桿菌菌液以及無菌上清液之照射區會產生銅金屬的堆積,本研究利用此現象成功的在銅片上寫出所預期的英文字母。
Abstract
Biomachining has provided a new vision of the property of micromachining. Presently, copper processing is the main stream in semiconductor industry. The main purpose of this research is the application of microorganism in micromachining of copper workpiece. Optical tweezers and microfluidic channel are used for manipulating microorganism. Thiobacillus ferrooxidans and thiobacillus thiooxidans have proved their potential for etching metal. In this study, two bacteria mentioned above are evaluated for material removal. There are three parts in this study, including the measurement of the tweezing efficiency, the investigation of the possible damage to thiobacillus thiooxidans under Nd:YAG laser and biomachining copper by microbers under optical tweezers. It is noted that thiobacillus thiooxidans and thiobacillus ferrooxidans were moved at and by optical tweezers with 450 mw of laser power. The activity of thiobacillus ferrooxidans has not been weakened at 900 mw of laser power lasting for 3 hours. The depth of the metal removal is measured. From the results of the experiment, thiobacillus thiooxidans show a machining depth of 80 nm in copper under the laser of tweezers. The accumulation of copper by thiobacillus ferrooxidans and the extracellular polymeric substances irradiated by Nd:YAG laser was firstly observed. The alphabet was successfully written on the copper sheet by their method in the study.
8 文獻回顧
[1] A. Ashkin, “Acceleration and Trapping of Particle by Radiation Pressure,” Phys. Rev. Lett, Vol. 24, P. 256, 1970.
[2] A. Ashkin and J.M. Dziedzic, (1971) “Optical levitation by radiation pressure,” Appl. Phys. Lett., Vol. 19, P. 283.
[3] A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm and S. Chu, (1986) “Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles, Opt. Lett. Vol. 11, P. 288.
[4] A. Ashkin, J.M. Dziedzic, and T. Yamane, (1987) “Optical trapping and manipulation of single cells using infrared laser beams,” Nature, VOL 330.
[5] K.C. Neuman, E.H. Chadd, G.F. Liou, K. Bergman and S.M. Block, (1999) “Characterization of Photo Damage to Escherichia Coli in Optical Traps,” Biophysical Journal, Vol. 77, P2856–2863,November.
[6] P.E. McGuff and E.J. Bell, (1966) “The effect of laser energy radiation on bacteria,” Med Biol Illust, 16: 191–194.
[7] R.J. Schultz, G.P. Harvey, M.E. Fernandez-Beros, S. Krishnamurthy, J.E. Rodreguez and F. Cabello, (1986) “Bactericidal effects of the Neodymium:YAG laser,” An in vitro study. Lasers Surg Med, 6: 445–448.
[8] S.L. Jacques,(1992) “Laser-tissue interactions. Photochemical, photo-. thermal, and photomechanical,” Surg Clin North Am, 1992;72: 531–58.
[9] I.A. Watson, G.D. Ward, R.K. Wang, J.H. Sharp, D.M. Budgett, D.E. Stewart-Tull, A.C. Wardlaw and C.R. Chatwin, (1996) “Comparative bactericidal activities of lasers operating at seven different wavelengths,” J Biomed Opt 1, 446–472.
[10] C.B.A. Yeo, I.A. Watson, D.E.S Stewart-Tull, A.C. Wardlaw and G.N. Armstrong, (1998) “Bactericidal effects of high-power Nd:YAG laser radiation on Staphylococcus aureus,” Pure Appl. Opt. 7, 643–655. Printed in the UK.
[11] G.D. Ward, I.A. Wastson, D.E.S. Stewart-Tull, A.C. Wardlaw, R.K. Wang, M.A. Nurley and A. Cooper, (2000) “Bactericidal action of high-power Nd:YAG laser light on Escherichia coli in saline suspension,” J Appl Microbiol, Sep;89(3):517-25.
[12] Che-Hsin Lin and Gwo-Bin Lee, (2003) “Polymer-MEMS and Its Applications on Microfluidic Chips for Bio-analysis,” Vol. 90, 電子月刊, pp. 144-156.
[13] Y.K. Nahmias, B.Z. Gao and D.J. Odde, (2004) “Dimensionless parameters for the design of optical traps and laser guidance systems,” Appl Opt, Jul 10;43(20):3999-4006.
[14] T. Moelleretal,(1980 & 1984) Chemistry with Inorganic Qualitative Analysis, 1st ed. & 2nd ed., Academic Press, New York.
[15] Y. Uno, T. Kaneeda and S. Yokomizo, (1993) “Fundamental study on biomachining (machining of metals by Thiobacillus ferrooxidans).” Trans. Jpn. Soc. Mech. Eng., Ser. C, 59, pp. 3199–3204.
[16] D. Zhang and Y. Li, (1996) “Possibility of biological micromachining used for
metal removal,” Science in China Series C Life Sciences, Vol. 41, pp. 151-156.
[17] W. Krebs, C. Brombacher, P.P. Bosshard, R. Bachhofen and H. Brandl, (1977) “Microbial recovery of metals from solids”, FEMS Microbiol Rev Vol. 20, 605-617.
[18] M.P. Silverman, (1967) “Mechanism of bacterial pyrite oxidation”, J Bacteriol Vol. 94 , 1046-1051.