研究生: |
陳泰吉 Tai-Chi Chen |
---|---|
論文名稱: |
黃嘌呤氧化酶兩單體間之交互作用對催化受質機制之探討 Investigation of Cooperative Interaction between the Homodimer Catalytic Subunits of Xanthine Oxidase |
指導教授: |
黃國柱
Kuo-Chu Hwang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 118 |
中文關鍵詞: | 黃嘌呤氧化酶 、異位黃嘌呤 、藥物動力學 、電荷效應 、交互作用 |
外文關鍵詞: | xanthine oxidase, allopurinol, cooperativity, enzyme kinetics |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
黃嘌呤氧化酶,分子量約為290kDa,為一個均相二聚體
( homodimer )。早期研究認為黃嘌呤氧化酶兩個單體之催化能力為各自獨立不受彼此影響的。實驗中發現,當黃嘌呤氧化酶兩個單體其中一個單體之活性位置佔有受質時,所產生應力會造成酵素結構上的扭曲,與不佔有受質之黃嘌呤氧化酶之FAD做比較,其螢光放光位置呈現藍位移現象,並證實佔有受質之單體會造成另一空的活性位置單體內FAD輔酶能階上升,在催化受質時,電荷會回堵在2Fe/2S clusters能階上。另外,兩單體內其中一個佔有抑制劑,另一個有空活性位置之單體內輔酶以還原態存在時,則會加快被抑制之單體中之抑制劑之解離。
本研究除了推翻過去五十年來黃嘌呤氧化酶兩單體間無交互作用,發現其存有相當強的交互作用,且以電子順磁共振光譜、旋光光譜、螢光光譜、紫外-可見光光譜法證實,所提出之新模型概念,即當受質佔有其中一個活性單體時,會使另一個空的活性單體內部輔酶FAD能階上升,使2Fe/2S clusters為最低能階。此概念除了瞭解抑制劑與黃嘌呤氧化酶結合後,長時間其催化受質的後續反應機制,也合理解釋先前文獻不合理的現象,以及為何高濃度受質可調控黃嘌呤氧化酶活性,使其催化能力與對受質之親和力變差。
李建雄,端木梁,翁郁嘉,黃淑姿,”生物化學”,藝軒出版社,台北市,2002
呂鋒洲,林仁混著,”基楚酵素學”台北巿/聯經,1991
黃永彥編著,“痛風與高尿酸血症”,合記圖書出版社,台北,2000
黎明倩,”黃嘌呤氧化酶催化過程交互作用之研究”,清華大學碩士論文,2004。
戴麟靄,“受質調控酵素活性”,清華大學博士論文,2003
Atkins, P.W.,”Physical Chemistry”, 2000, sixth edition, chp. 25.7, p778-p781
Barber, M. J., and Siegel, L. M., Biochemistry, 1982, 21, 1638
Barber, M. J. et al., Biochemistry, 1982, 21, 3561,
Beinert, H., Orme-Johnson, W. H., and Palmer G., Methods Enzymol., 1978, 54, 111
Bhattacharyya, A., Tollin, G., Davis, M., and Edmondson, D. E., Biochemistry, 1983, 22, 5270
Burgess, B. K. et al., Chem. Rev., 1996, 96, 2983
Bray, R.C. et al., Biochem. J., 1959, 73, 193
Bray, R.C. et al., Biochem. J., 1969, 114, 725
Bray, R.C. et al., Biochem. Soc. Trans., 1985, 13, 560
Bray, B. C., Palmer, G., and Beinert, H., J. B.C., 1964, 239, 2667
Bray, R. C., in P. O. Boyer, Lardy, H., and Myrback, K. ( Editors ), The enzymes., Vol. 7, Academic Press, New York, 1963, p. 533
Cammack, R. et al., Biochem. J., 1976, 157, 469
Cleere, W. F., and Coughlan, M. P., Comp. Biochem.Physiol., 1975, 50B, 311
Endrizzi, J. A., Beernink, P. T., Alber, T., and Schachman, H. K., PNAS, 2000, 97, 5077
Enroth, C., Eger, B. T., Okamoto, K., Nishino, T., Nishino, T., and Pai, E., PNAS, 2000, 97, 10723
Feigelson, P. et al., J. Biol. Chem., 1957, 266, 993
Fridovich, L., and Handler, P., J. Biol. Chem., 1958, 231, 899
Gibons, J. F. et al., Biochim. Biophys. Acta., 1968, 153, 222
Gutteridge, S. et al., Biochem. J., 1978, 175, 869
Halliwell, B., “ Free radical in Biological and Medicine ”, Chap 8
Hart, L., Mcgartoll, M. A., Chapman, H. R., and Bray, R. C., Biochem. J., 1970, 116, 851
Hille, R., Nishino, T., FASEB. J., 1995, 9, 995
Hille, R. et al., Inorg. Chem., 1989, 28, 4018
Hille, R., and Massey, V., Pharm. Ther., 1981, 14, 249
Hille, R., Chem. Rev. 1996, 96, 2757
Hille, R., and Anderson, R., J. Biol. Chem., 1991, 266, 5608
Hille, R., Hagen, W. R., and Dunham, W. R., J. Biol. Chem., 1985, 260, 10569
Hille, R., Biochim. Biophys. Acta., 1994, 1184, 143
Hofstee, B. H. J., J. Biol. Chem., 1955, 216, 235
Holm, R. H., Chem. Rev., 1987, 87, 1401
Howard, J. et al., Chem. Rev., 1996, 96, 2965
Howes, B. D., Pinhal, N. M., Turner, N. A., Bray, R. C., Anger, G., Ehrenberg, A., Raynor, J. B., and Lowe, D. J., Biochemistry, 1990, 29, 6120
Hurley, T. D., Perez-Miller, S., and Breen, H., Chem.-Biol. Interact., 2001, 130, 3
Jeffrey, W. et al., Biochem. J., 1981, 195, 753
Johnson L. N., and Barford, D., J. Biol. Chem., 1990, 265, 2409
Kalckar, H. M., Kieldgaard, N.O., and Klenow, H., J. Biol. Chem., 1948, 174, 771
Kalckar, H. M., and Klenow, H., J. Biol. Chem., 1948, 172, 349
Kilmartin, J. V., Imai, K., and Jones, R. T., in Erythrocyte structure and function. Alan R. Liss, p.21, 1975
Komai, H., Massey, V., and Palmer, G., J. Biol. Chem., 1969, 244, 1692
Lowe, D. J. et al., Biochem. J., 1972, 130, 2239
Lowry, O. H., Bessey, O. A., and Crawford, E. J., J. Biol. Chem., 1949, 180, 399
Massey, V., Komai, H., Palmer, G., and Elion, G. B., J. Biol. Chem., 1970, 245, 2837
Massey, V. and Edmondson, D., J. Biol. Chem., 1970, 245, 6595
Massey, V., Brumby, P. E., Komai, H., and Palmer, G., J. Biol. Chem., 1969, 244, 1682
Morell, D. B., Biochem. J., 1952, 51, 657
Morpeth, F. F., Biochemica et Biophysica Acta, 1983, 744, 328
Newell, J. O., Markby, D. W., and Schachman, H. K., J. Biol. Chem., 1989, 264, 2476
Nishino, T., and Okamoto, K., Journal of Inorganic Biochemistry, 2000, 82, 43
Nishino, T. and Tsushima, K., FEBS letters, 1981, 131, 369
Olson, J. S., Ballou, D. P., Palmer, G., and Massey, V., J. Biol. Chem., 1974, 249, 4363
Palmer, G., Bray, R. C., and Beinert, H., J. Biol. Chem., 1964, 239, 2657
Palmer, G., and Massey, V., J. Biol. Chem., 1969, 244, 2614
Pick, F. M. et al., Biochem. J., 1969, 114, 735
Porras, A. G., and Palmer, G., J. Biol. Chem., 1982, 257, 11617
Ruboo, H., Radi, R., and Prodano, E., Biochemica et Biophysica Acta, 1991, 1074, 386
Sau, A. K., and Mitra, S., Biochimica et Biophysica Acta, 2000, 1481, 273
Schardinger, F. Z., Untersuch. Nahrungs Genussmittel, 1902, 5, 1113
Stiefel, E. I., Annu. Chem. Soc. Symp., 1993, 535, 1
Stryer, L., “ Biochemistry ”,Fourth ed. Chap. 10, p237-239
Stryer, L., “Biochemistry”, Fourth ed., Chap. 29, p756
Tai, L. A., and Hwang, K. C., Biochemistry, 2004, 43, 4869
Turner, N. A. et al., Biochem. J., 1989, 260, 563
Walker, M. C., Hazzard, J. T., Tollin, G., and Edmondson, D. E., Biochemistry, 1991, 30, 5912
Watanabe, K., Arai, T., Mori, H., Nakao, S., Suzuki, T., Tajima, K., Makino, K., and Mori, K., Biochem. Biophys. Res. Commun., 1997, 233, 447
Woodle, M., Zhang, J. W., and Mauzerall, D., Biophys. J., 1987, 52, 577