簡易檢索 / 詳目顯示

研究生: 石慶仁
Shih, Cing-Ren
論文名稱: 以銅做為催化劑之酸蝕刻液進行單晶矽太陽能電池表面製絨之穩定性研究
Study on the Stability of Surface Texturing of Single Crystalline Silicon Solar Cells Using Copper as Catalyst in Acid Etching Solution
指導教授: 王立康
Wang, Li-Karn
口試委員: 李明昌
Lee, Ming-Chang
陳昇暉
Chen, Sheng-Hui
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 75
中文關鍵詞: 倒金字塔金屬輔助化學蝕刻太陽能板
外文關鍵詞: inverted pyramids, metal-assisted chemical etching, solar cells
相關次數: 點閱:47下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今業界上的太陽能板以正金字塔為主,鮮少有倒金字塔的太陽能板,而
    倒金字塔結構相對於正金字塔有著較低的反射率,所以本實驗利用 P 型單晶矽
    片以金屬輔助化學蝕刻方法在表面製絨出倒金字塔的結構並確保其穩定性,即
    同一杯蝕刻液能蝕刻出相似形貌的最大樣本數。整個製程中會進行二步蝕刻,
    首先固定金屬離子濃度、HF 濃度,改變 H2O2濃度的酸蝕刻液進行蝕刻,藉由
    H2O2在溶液中所扮演的氧化還原角色以尋找最多的有效蝕刻次數,接者再用 40
    wt%的 KOH 進行表面形貌的修飾。
    最後的數據分析會利用熱場發射掃描式電子顯微鏡(TESEM)分析材料表面
    的形貌與結構;利用紫外可見光譜儀(UV-VIS)進行表面反射率的量測。從 SEM
    圖可得到當金屬離子濃度固定為 60 mM,HF 濃度固定為 3.5 M,蝕刻溫度
    45°C,蝕刻時間為 5 分鐘,當 H2O2濃度從 1.5 M 逐漸提升至 2 M,確實可增加
    蝕刻次數至三次。而當 H2O2濃度為 2.25 M 時,反而會在結構表面形成許多細
    小孔洞,不利於後續製程,因此最佳的 H2O2濃度定為 2 M。接著將金屬離子濃
    度增加至 120 mM,並降低蝕刻時間至 2 分鐘,其餘參數固定,重複上述實驗,
    最後成功製絨出六片具有相似形貌的蝕刻片,平均反射率維持在 6-8%,皆低於
    PN 片的 9.5%,且經過 KOH 修飾後的蝕刻片也擁有跟 PN 片相似的平均反射
    率。


    Nowadays, the textured surfaces of the solar cells in the industry
    are mainly pyramids, and there are few solar cells with inverted pyramids.
    Compared with the pyramid structure, the inverted pyramid structure has
    a lower reflectivity. Therefore in this experiment we use P-type single
    crystalline silicon substrates with metal-assisted chemical etching to form
    inverted pyramids. We texture the inverted pyramid structure on the
    surface and ensure its stability, that is, maintaining the maximum number
    of samples with similar shapes in the same cup of etching solution. In the
    whole process, a two-step etching will be carried out. Firstly, the
    concentration of metal ions and HF will be fixed, the concentration of
    H2O2 will be changed for the acid etching. The redox role played by H2O2
    in the solution is used to the maximum number of effective etching times.
    Then 40 wt% KOH was used to modify the surface morphology.
    The final data analysis will use thermal field emission scanning
    electron microscopy (TESEM) to analyze the morphology and structure
    of the material surface, and use ultraviolet-visible spectrometer (UV-VIS)
    to measure the surface reflectance. From the SEM image, it can be
    observed that when the concentration of metal ions is 60 mM, the
    concentration of HF is 3.5 M, etching temperature at 45°C, and etching
    time at 5 minutes, gradually increasing the concentration of H2O2 from
    1.5 M to 2 M can indeed increase the etching cycles to three times.
    However, when the concentration of H2O2 reaches 2.25 M, it instead leads
    to the formation of numerous small holes on the surface of the structures,
    which is detrimental to the subsequent processing. Therefore, the optimal
    the concentration of H2O2 is determined to be 2 M. Subsequently,
    increasing the concentration of metal ions to 120 mM and reducing the
    etching time to 2 minutes, while keeping the other parameters constant,
    3
    repeating the aforementioned experiment, ultimately resulted in the
    successful fabrication of six etched pieces with similar morphology. The
    average reflectance remains at 6-8%, all lower than the 9.5% of the PN
    substrates. Furthermore, the etched pieces, after KOH modification, also
    exhibit a similar average reflectance to the PN substrates.

    目錄 摘要.................................................... 1 Abstract ............................................... 2 目錄.................................................... 4 圖目錄.................................................. 6 表目錄.................................................. 9 第一章、導論............................................. 10 1.1 前言................................................. 10 1.2 文獻回顧.............................................. 10 1.2.1 晶片的製造.......................................... 10 1.2.2 切割法的差異........................................ 12 1.2.3 表面紋理化.......................................... 13 1.3 研究動機.............................................. 16 1.4 論文架構.............................................. 16 第二章、太陽能電池基本原理.................................. 17 2.1 半導體材料與特性....................................... 17 2.2 半導體載子的產生與複合................................. 18 2.3 半導體的摻雜.......................................... 20 2.4 半導體之 pn 接面 ..................................... 22 2.5 太陽光譜............................................. 23 2.6 太陽能電池基本原理.................................... 24 2.7 太陽能電池參數........................................ 25 2.8 太陽能電池等效電路.................................... 26 2.9 蝕刻製程-鹼蝕刻....................................... 27 2.10 蝕刻製程-酸蝕刻...................................... 28 2.11 蝕刻製程-金屬輔助化學蝕刻............................. 29 2.12 正金字塔、倒金字塔結構之比較........................... 32 第三章、研究方法與製程步驟.................................. 35 3.1 實驗架構............................................... 35 3.2 使用儀器介紹........................................... 35 3.3 實驗步驟............................................... 36 3.3.1 實驗流程............................................. 36 3.3.2 RCA clean .......................................... 37 3.3.3 表面紋理化(Texture).................................. 38 第四章、實驗數據分析........................................ 40 4.1 不同 H2O2濃度之蝕刻結果 ................................ 40 4.1.1 Cu(NO3)2/HF/H2O2= 60 mM/3.5 M/ 1.5 M ............... 40 4.1.2 Cu(NO3)2/HF/H2O2= 60 mM/3.5 M/ 1.75 M .............. 41 4.1.3 Cu(NO3)2/HF/H2O2= 60 mM/3.5 M/ 2 M ................. 43 4.1.4 Cu(NO3)2/HF/H2O2= 60 mM/3.5 M/ 2.25 M .............. 44 4.1.5 Cu(NO3)2/HF/H2O2= 120 mM/3.5 M/ 2 M ................ 46 4.2 40 wt% KOH 表面修飾之結果 ............................. 47 4.2.1 不同濃度 KOH 修飾之結果.............................. 47 4.2.2 KOH 修飾時間之差異................................... 48 4.2.3 Cu(NO3)2/HF/H2O2= 60 mM/3.5 M/ 1.5 M 之表面修飾...... 49 4.2.4 Cu(NO3)2/HF/H2O2= 60 mM/3.5 M/ 1.75 M 之表面修飾..... 50 4.2.5 Cu(NO3)2/HF/H2O2= 60 mM/3.5 M/ 2 M 之表面修飾........ 52 4.2.6 Cu(NO3)2/HF/H2O2= 60 mM/3.5 M/ 2.25 M 之表面修飾..... 53 4.2.7 Cu(NO3)2/HF/H2O2= 120 mM/3.5 M/ 2 M 之表面修飾....... 54 4.3 反射率量測............................................. 55 4.3.1 不同濃度 KOH 修飾結果之反射率......................... 55 4.3.2 KOH 修飾時間之反射率.................................. 56 4.3.3 Cu(NO3)2/HF/H2O2= 60 mM/3.5 M/ 1.5 M 反射率.......... 57 4.3.4 Cu(NO3)2/HF/H2O2= 60 mM/3.5 M/ 1.75 M 反射率......... 58 4.3.5 Cu(NO3)2/HF/H2O2= 60 mM/3.5 M/ 2 M 反射率............ 60 4.3.6 Cu(NO3)2/HF/H2O2= 60 mM/3.5 M/ 2.25 M 反射率......... 61 4.3.7 Cu(NO3)2/HF/H2O2= 120 mM/3.5 M/ 2 M 反射率........... 63 4.3.8 各組參數反射率數據圖.................................. 64 第五章、結論及未來展望...................................... 66 參考文獻................................................... 68 附錄....................................................... 71

    1. A. Goetzberger, C. Hebling, and H. W. Schock, "Photovoltaic materials,
    history, status and outlook," Materials Science and Engineering: R: Reports,
    vol. 40, no. 1, p. 1-46, 2003.
    2. A. Kumagai, "Texturization using metal catalyst wet chemical etching for
    multicrystalline diamond wire sawn wafer," Solar Energy Materials and Solar
    Cells, vol. 133, p. 216-222, 2015.
    3. N. Watanabe, Y. Kondo, D. Ide, T. Matsuki, H. Takato, and I. Sakata,
    "Characterization of polycrystalline silicon wafers for solar cells sliced with
    novel fixed-abrasive wire," Progress in Photovoltaics : Research and
    Applications, vol. 18, no. 7, p. 485-490, 2010.
    4. A. W. Smith, and A. Rohatgi, "Ray tracing analysis of the inverted pyramid
    texturing geometry for high efficiency silicon solar cells," Solar Energy
    Materials and Solar Cells, vol. 29, no. 1, p. 37-49, 1993.
    5. E. Vazsonyi, K. De Clercq, R. Einhaus, E. Van Kerschaver, K. Said, J.
    Poortmans, et al, "Improved anisotropic etching process for industrial
    texturing of silicon solar cells," Solar Energy Materials and Solar Cells, vol.
    57, no. 2, p. 179-188, 1999.
    6. P. K. Singh, R. Kumar, M. Lal, S. N. Singh, and B. K. Das, "Effectiveness of
    anisotropic etching of silicon in aqueous alkaline solutions," Solar Energy
    Materials and Solar Cells, vol. 70, no. 1, p. 103-113, 2001.
    7. D. Iencinella, E. Centurioni, R. Rizzoli, and F. Zignani, "An optimized
    texturing process for silicon solar cell substrates using TMAH," Solar Energy
    Materials and Solar Cells, vol. 87, no. 1-4, p. 725-732, 2005.
    8. Z. Q. Ying, M. D. Liao, X. Yang, C. Han, J. Q. Li, J. S. Li, et al, "Highperformance black multicrystalline silicon solar cells by a highly simplified
    metal-catalyzed chemical etching method," IEEE Journal of Photovoltaics,
    vol. 6, no. 4, p. 888-893, 2016.
    9. H. Y. Xu, S. H. Zhong, Y. F. Zhuang, and W. Z. Shen, "Controllable
    nanoscale inverted pyramids for highly efficient quasi-omnidirectional
    crystalline silicon solar cells," Nanotechnology, vol. 29, no. 1, p. 015403,
    2017.
    69
    10. Y. Wang, L. X. Yang, Y. P. Liu, Z. X. Mei, W. Chen, J. Q. Li, et al, "Maskless
    inverted pyramid texturization of silicon," Scientific Reports, vol. 5, p. 10843,
    2015.
    11. X. W. Dai, R. Jia, G. Y. Su, H. C. Sun, K. Tao, C. Zhang, et al, "The influence
    of surface structure on diffusion and passivation in multicrystalline silicon
    solar cells textured by metal assisted chemical etching (MACE)
    method," Solar Energy Materials and Solar Cells, vol. 186, p. 42-49, 2018.
    12. Z. G. Huang, K. Gao, X. G. Wang, C. Xu, X. M. Song, L. X. Shi, et al,
    "Large-area MACE Si nano-inverted-pyramids for PERC solar cell
    application," Solar Energy, vol. 188, p. 300-304, 2019.
    13. A. Srivastava, D. Sharma, S. Laxmi, J. S. Tawale, P. Pathi, and S. K.
    Srivastava, "Excellent omnidirectional light trapping properties of inverted
    micro-pyramid structured silicon by copper catalyzed chemical
    etching," Optical Materials, vol. 131, p. 112677, 2022.
    14. 維基百科. Available from: https://zh.wikipedia.org/zh-tw/%E7%A1%85
    15. 國家實驗研究院. Available from:
    https://www.narlabs.org.tw/xcscience/cont?xsmsid=0I148638629329404252&
    qcat=0I164512522332344267&sid=0J123382852944198982
    16. 光焱科技. Available from: https://enlitechnology.com/zh-hant/blog-zhhant/pv-zh-hant/ss-x-solar-simulatior-zh-hant/solar-simulator-01/
    17. P. K. Singh, R. Kumar, M. Lal, S. N. Singh, and B. K. Das, "Effectiveness of
    anisotropic etching of silicon in aqueous alkaline solutions," Solar Energy
    Materials and Solar Cells, vol. 70, no. 1, p. 103-113, 2001.
    18. D. N. Zhang, J. W. Chen, R. Jia, Z. B. Gao, K. Tao, L. J. Wang, et al, "Texture
    engineering of mono-crystalline silicon via alcohol-free alkali solution for
    efficient PERC solar cells," Journal of Energy Chemistry, vol. 71, p. 104-112,
    2022.
    19. Y. X. Zhang, B. L. Wang, X. P. Li, Z. B. Gao, Y. Zhou, M. H. Li, et al, "A
    novel additive for rapid and uniform texturing on high-efficiency
    monocrystalline silicon solar cells," Solar Energy Materials and Solar Cells,
    vol. 222, p. 110947, 2021.
    20. Z. H. Sun, W. Chen, X. H. Zhang, M. Xu, G. G. Xing, X. Q. Chen, et al,
    "Chain pyramid texturization for better light trapping and efficiency of silicon
    70
    solar cells," Solar Energy Materials and Solar Cells, vol. 251, p. 112137,
    2023.
    21. Y. Nishimoto, T. Ishihara, and K. Namba, "Investigation of acidic
    texturization for multicrystalline silicon solar cells," Journal of the
    Electrochemical Society, vol. 146, no. 2, p. 457-461, 1999.
    22. R. Watanabe, S. Abe, S. Haruyama, T. Suzuki, M. Onuma, and Y. Saito,
    "Evaluation of a new acid solution for texturization of multicrystalline silicon
    solar cells," International Journal of Photoenergy, vol. 2013, p. 951303, 2013.
    23. J. L. Yang, H. L. Shen, Y. Jiang, and L. H. Sun, "Controllable fabrication and
    mechanism study of textured ultra-thin silicon wafers via one-step Cu-assisted
    chemical etching," Materials Science in Semiconductor Processing, vol. 100,
    p. 79-86, 2019.
    24. X. Leng, C. Wang, and Z. Yuan, "Progress in metal-assisted chemical etching
    of silicon nanostructures," Procedia CIRP, vol. 89, p. 26-32, 2020.
    25. Y. M. Yang, P. K. Chu, Z. W. Wu, S. H. Pu, T. F. Hung, K. F. Huo, et al,
    "Catalysis of dispersed silver particles on directional etching of
    silicon," Applied Surface Science, vol. 254, no. 10, p. 3061-3066, 2008.
    26. J. Y. Li, C. H. Hung, and C. Y. Chen, "Hybrid black silicon solar cells
    textured with the interplay of copper-induced galvanic
    displacement," Scientific Reports, vol. 7, p. 17177, 2017.
    27. 台灣半導體研究中心,“熱場發射掃描式電子顯微鏡(TFSEM)”. Available
    from: https://www.tsri.org.tw/tw/commonPage.jsp?kindId=E0019.
    28. NTHU Y.-C. Hung Lab, “UV/VIS 光譜儀 Lambda 35”. Available from:
    http://oplab.ipt.nthu.edu.tw/main/node/32.
    29. D. N. Zhang, L. J. Wang, R. Jia, K. Tao, S. Jiang, H. Y. Ge, et al, "Improving
    the performance of PERC silicon solar cells by optimizing the surface inverted
    pyramid structure on large-area mono-crystalline silicon wafers," Materials
    Science in Semiconductor Processing, vol. 138, p. 106281, 2021.

    QR CODE