研究生: |
何坤軒 HO, KUN-HSUAN |
---|---|
論文名稱: |
運用蛋白質體學和分子對接研究舒巴坦對鮑氏不動桿菌ATCC19606 的殺菌效果 Bactericidal effect of sulbactam against Acinetobacter baumannii ATCC19606 studied by proteomic and molecular docking |
指導教授: |
李寬容
Lee, Kuan-Rong |
口試委員: |
高茂傑
彭明德 黃啟訓 葉伯壽 |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 鮑氏不動桿菌 、舒巴坦 、蛋白質體學 、分子對接 、雙分子調控系統 、幫浦系統 |
外文關鍵詞: | Acinetobacter baumannii, Sulbactam, Proteomic, Molecular ducking, Two component regulatory system, Efflux pump |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鮑氏不動桿菌(Acinetobacter baumannii)和醫院加護病房感染有關,如呼吸相關的肺炎和腦膜炎。Sulbactam是一種乙內酰胺酶抑制劑(β-lactamase inhibitor),通常與乙內酰胺類抗生素(β-lactam antibiotic)合併使用來治療感染患者。研究發現單獨使用Sulbactam可用於治療鮑氏不動桿菌引起的感染,儘管殺菌作用機制仍然未知。在這項研究中,蛋白質體學被用來分析蛋白質表現量的變化,並分析出Sulbactam作用後鮑氏不動桿菌的蛋白質變化。總共有54個蛋白質被發現在表現量上有明顯的變化。表現量降低的蛋白質包括ATP結合轉運蛋白(ATP-binding cassette (ABC) transporters proteins)以及30S和50S核糖體亞單位蛋白(30S、50S ribosomal subunit proteins)。這些蛋白質對營養物質的輸入和蛋白質的合成是不可或缺的,對細菌的生存至關重要。增加的蛋白質包括谷氨酰胺合成酶(glutamine synthetase)、蘋果酸酶(malate dehydrogenase)、RNA聚合酶亞單位(RNA polymerase subunit)以及分子伴侶(molecular chaperone)蛋白DnaK和GroEL,它們在新陳代謝、DNA和蛋白質合成以及修復機制中發揮作用。這些增加的蛋白質維持細菌機能,然而它們不能抵抗減少蛋白質的影響,最終導致細菌被殺死。這是第一個研究有關於Sulbactam對鮑氏不動桿菌的殺菌作用中,減少ABC轉運蛋白和30S及50S核糖體亞單位蛋白質起重要的作用。從整個細菌表面上的感測器來看,雙組分調控系統(Two-component regulatory systems, TCSs)對細菌的適應環境能力和調控機能非常重要。在這項研究當中我們鎖定研究兩種TCSs即AdeSR和BaeSR。藉由Swiss-Model比對出一個與TCSs的二聚體和組胺酸磷酸化(DHp)以及催化ATP結合結構(catalytic and ATP-binding, CA)域高相似度的蛋白質。使用分子對接模擬工具SwissDock和ArgusLab將結構上與Sulbactam和其他乙內醯胺抑制劑,與所選的蛋白質序列4JAS對接。用這兩個分析工具的分析結果,Sulbactam可以在4JAS的活性位置上以相對穩定態進行反應。Sulbactam很可能與BaeSR和AdeSR的活性位置相互作用,由於其較小尺寸和與Mg2+形成離子鍵的能力,它有可能與BaeSR和AdeSR中的ATP/ADP競爭來影響鮑氏不動桿菌的繁殖。這是首次利用分子對接分析研究Sulbactam與鮑式不動桿菌中TCSs之間的關聯性。
Acinetobacter baumannii is associated with hospital intensive care unit infections such as respiratory-associated pneumonia and meningitis. It is often used in combination with β-lactam antibiotics to treat patients with infections. Sulbactam alone has been found to be useful in the treatment of infections caused by A. baumannii, although the mechanism of bactericidal action remains unknown. In this study, proteomics was used to analyze the changes in protein expression and to analyze the protein changes in A. baumannii after Sulbactam treatment. A total of 54 proteins were found to have significant changes in intensity. The proteins with reduced expression included ATP-binding cassette (ABC) transporters proteins and 30S and 50S ribosomal subunit proteins. These proteins are essential for nutrient import and protein synthesis and are critical for bacterial survival. The increased proteins include glutamine synthetase, malic enzyme, RNA polymerase subunits, and the molecular chaperone proteins DnaK and GroEL, which play a role in metabolism, DNA and protein synthesis, and repair mechanisms. These increased proteins maintain bacterial function, but they do not resist the effects of reduced proteins, ultimately leading to bacterial killing. This is the first study on the bactericidal effect of Sulbactam on A. baumannii in which the reduction of ABC transport protein and 30S and 50S ribosomal subunit proteins play an important role. On the other hand, the mechanism of sulbactam action from a sensor perspective. Two-component regulatory systems (TCSs) are important for the environmental adaptability and regulatory functions of bacteria, as evidenced by the sensors on the whole bacterial surface. In this study, we targeted two TCSs, AdeSR and BaeSR, and compared a protein with high similarity to the dimerization and histidine phosphorylation (DHp) and catalytic and ATP-binding (CA) domains of the TCSs by Swiss-Model. Molecular docking simulation tools SwissDock and ArgusLab were used to structurally dock Sulbactam and other acetamide inhibitors to the selected protein sequence 4JAS. Using the results of these two analytical tools, Sulbactam can react in a relatively stable state at the active site of 4JAS. Sulbactam is likely to interact with the active sites of BaeSR and AdeSR, and due to its small size and ability to form ionic bonds with Mg2+, it is likely to compete with ATP/ADP in BaeSR and AdeSR. This is the first study of the association between Sulbactam and TCSs in A. baumannii using molecular docking analysis.
1.Juni, E., Interspecies transformation of Acinetobacter: genetic evidence for a ubiquitous genus. J Bacteriol, 1972. 112(2): p. 917-31.
2.Baumann, P., Isolation of Acinetobacter from soil and water. J Bacteriol, 1968. 96(1): p. 39-42.
3.Jawad, A., et al., Influence of relative humidity and suspending menstrua on survival of Acinetobacter spp. on dry surfaces. J Clin Microbiol, 1996. 34(12): p. 2881-7.
4.Espinal, P., S. Martí, and J. Vila, Effect of biofilm formation on the survival of Acinetobacter baumannii on dry surfaces. J Hosp Infect, 2012. 80(1): p. 56-60.
5.Garnacho-Montero, J. and R. Amaya-Villar, Multiresistant Acinetobacter baumannii infections: epidemiology and management. Curr Opin Infect Dis, 2010. 23(4): p. 332-9.
6.Karageorgopoulos, D.E. and M.E. Falagas, Current control and treatment of multidrug-resistant Acinetobacter baumannii infections. Lancet Infect Dis, 2008. 8(12): p. 751-62.
7.Sampson, T.R., et al., Rapid killing of Acinetobacter baumannii by polymyxins is mediated by a hydroxyl radical death pathway. Antimicrob Agents Chemother, 2012. 56(11): p. 5642-9.
8.Corbella, X., et al., Emergence and rapid spread of carbapenem resistance during a large and sustained hospital outbreak of multiresistant Acinetobacter baumannii. J Clin Microbiol, 2000. 38(11): p. 4086-95.
9.Naas, T., et al., VEB-1 Extended-spectrum beta-lactamase-producing Acinetobacter baumannii, France. Emerg Infect Dis, 2006. 12(8): p. 1214-22.
10.Karlowsky, J.A., et al., Surveillance for antimicrobial susceptibility among clinical isolates of Pseudomonas aeruginosa and Acinetobacter baumannii from hospitalized patients in the United States, 1998 to 2001. Antimicrob Agents Chemother, 2003. 47(5): p. 1681-8.
11.Halstead, D.C., J. Abid, and M.J. Dowzicky, Antimicrobial susceptibility among Acinetobacter calcoaceticus-baumannii complex and Enterobacteriaceae collected as part of the Tigecycline Evaluation and Surveillance Trial. J Infect, 2007. 55(1): p. 49-57.
12.Hsueh, P.R., et al., Pandrug-resistant Acinetobacter baumannii causing nosocomial infections in a university hospital, Taiwan. Emerg Infect Dis, 2002. 8(8): p. 827-32.
13.Davis, K.A., et al., Multidrug-resistant Acinetobacter extremity infections in soldiers. Emerg Infect Dis, 2005. 11(8): p. 1218-24.
14.Maragakis, L.L. and T.M. Perl, Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options. Clin Infect Dis, 2008. 46(8): p. 1254-63.
15.Lee, B., Conformation of penicillin as a transition-state analog of the substrate of peptidoglycan transpeptidase. J Mol Biol, 1971. 61(2): p. 463-9.
16.Gehrlein, M., et al., Imipenem resistance in Acinetobacter baumanii is due to altered penicillin-binding proteins. Chemotherapy, 1991. 37(6): p. 405-12.
17.Büscher, K.H., et al., Imipenem resistance in Pseudomonas aeruginosa resulting from diminished expression of an outer membrane protein. Antimicrob Agents Chemother, 1987. 31(5): p. 703-8.
18.Köhler, T., et al., Carbapenem activities against Pseudomonas aeruginosa: respective contributions of OprD and efflux systems. Antimicrob Agents Chemother, 1999. 43(2): p. 424-7.
19.Bush, K., G.A. Jacoby, and A.A. Medeiros, A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother, 1995. 39(6): p. 1211-33.
20.Bush, K., New beta-lactamases in gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clin Infect Dis, 2001. 32(7): p. 1085-9.
21.Lobanovska, M. and G. Pilla, Penicillin's Discovery and Antibiotic Resistance: Lessons for the Future? Yale J Biol Med, 2017. 90(1): p. 135-145.
22.Fraser, I., Penicillin: early trials in war casualties. Br Med J (Clin Res Ed), 1984. 289(6460): p. 1723-5.
23.Ligon, B.L., Penicillin: its discovery and early development. Semin Pediatr Infect Dis, 2004. 15(1): p. 52-7.
24.Nelson, M.L. and S.B. Levy, The history of the tetracyclines. Ann N Y Acad Sci, 2011. 1241: p. 17-32.
25.García Lorente, M., et al., Brief history of chloramphenicol in ophthalmology. Is it safe to use? Arch Soc Esp Oftalmol (Engl Ed), 2020. 95(3): p. 153-154.
26.Lechevalier, H.A., The 25 years of neomycin. CRC Crit Rev Microbiol, 1975. 3(4): p. 359-97.
27.Gore, J., et al., Mechanochemical analysis of DNA gyrase using rotor bead tracking. Nature, 2006. 439(7072): p. 100-104.
28.Tran, J.H., G.A. Jacoby, and D.C. Hooper, Interaction of the plasmid-encoded quinolone resistance protein Qnr with Escherichia coli DNA gyrase. Antimicrob Agents Chemother, 2005. 49(1): p. 118-25.
29.Villain-Guillot, P., et al., Progress in targeting bacterial transcription. Drug Discov Today, 2007. 12(5-6): p. 200-8.
30.Connell, S.R., et al., Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob Agents Chemother, 2003. 47(12): p. 3675-81.
31.Popham, D.L. and K.D. Young, Role of penicillin-binding proteins in bacterial cell morphogenesis. Curr Opin Microbiol, 2003. 6(6): p. 594-9.
32.Tenover, F.C., Mechanisms of antimicrobial resistance in bacteria. Am J Med, 2006. 119(6 Suppl 1): p. S3-10; discussion S62-70.
33.Zavascki, A.P., et al., Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J Antimicrob Chemother, 2007. 60(6): p. 1206-15.
34.Levy, S.B., The challenge of antibiotic resistance. Sci Am, 1998. 278(3): p. 46-53.
35.Levy, S.B., Microbial resistance to antibiotics. An evolving and persistent problem. Lancet, 1982. 2(8289): p. 83-8.
36.Barber, M. and M. Rozwadowska-Dowzenko, Infection by penicillin-resistant staphylococci. Lancet, 1948. 2(6530): p. 641-4.
37.Crofton, J. and D.A. Mitchison, Streptomycin resistance in pulmonary tuberculosis. Br Med J, 1948. 2(4588): p. 1009-15.
38.Levy, S.B., Antibiotic resistance: consequences of inaction. Clin Infect Dis, 2001. 33 Suppl 3: p. S124-9.
39.Elwell, L.P., et al., Plasmid-mediated beta-lactamase production in Neisseria gonorrhoeae. Antimicrob Agents Chemother, 1977. 11(3): p. 528-33.
40.De Graaff, J., L.P. Elwell, and S. Falkow, Molecular nature of two beta-lactamase-specifying plasmids isolated from Haemophilus influenzae type b. J Bacteriol, 1976. 126(1): p. 439-46.
41.van Embden, J.D., H.W. Engel, and B. van Klingeren, Drug resistance in group D streptococci of clinical and nonclinical origin: prevalence, transferability, and plasmid properties. Antimicrob Agents Chemother, 1977. 11(6): p. 925-32.
42.Asante, K.P., et al., Knowledge of antibiotic resistance and antibiotic prescription practices among prescribers in the Brong Ahafo Region of Ghana; a cross-sectional study. BMC Health Serv Res, 2017. 17(1): p. 422.
43.Geraci, J.E., et al., Some laboratory and clinical experiences with a new antibiotic, vancomycin. Antibiot Annu, 1956: p. 90-106.
44.Moellering, R.C., Jr., The specter of glycopeptide resistance: current trends and future considerations. Am J Med, 1998. 104(5a): p. 3s-6s.
45.Siebert, W.T., N. Moreland, and T.W. Williams, Jr., Synergy of vancomycin plus cefazolin or cephalothin against methicillin-resistance Staphylococcus epidermidis. J Infect Dis, 1979. 139(4): p. 452-7.
46.Wang, H., et al., Genetic characterization of highly fluoroquinolone-resistant clinical Escherichia coli strains from China: role of acrR mutations. Antimicrob Agents Chemother, 2001. 45(5): p. 1515-21.
47.Wormser, G.P. and M.M. Bergman, The Antibiotic Paradox: How the Misuse of Antibiotics Destroys Their Curative Powers, 2nd Edition By Stuart B. Levy Cambridge, Massachusetts: Perseus Publishing, 2002. 376 pp., illustrated. $17.50 (paper). Clinical Infectious Diseases, 2003. 36(2): p. 238-238.
48.Levy, S.B. and B. Marshall, Antibacterial resistance worldwide: causes, challenges and responses. Nat Med, 2004. 10(12 Suppl): p. S122-9.
49.Xu, C., et al., Analysis of outer membrane proteome of Escherichia coli related to resistance to ampicillin and tetracycline. Proteomics, 2006. 6(2): p. 462-73.
50.Chen, S., et al., Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. Antimicrob Agents Chemother, 2007. 51(2): p. 535-42.
51.Hawkey, P.M., Mechanisms of quinolone action and microbial response. J Antimicrob Chemother, 2003. 51 Suppl 1: p. 29-35.
52.Wright, G.D. and P.R. Thompson, Aminoglycoside phosphotransferases: proteins, structure, and mechanism. Front Biosci, 1999. 4: p. D9-21.
53.Sköld, O., Resistance to trimethoprim and sulfonamides. Vet Res, 2001. 32(3-4): p. 261-73.
54.Hanaki, H., et al., Activated cell-wall synthesis is associated with vancomycin resistance in methicillin-resistant Staphylococcus aureus clinical strains Mu3 and Mu50. J Antimicrob Chemother, 1998. 42(2): p. 199-209.
55.Corbella, X., et al., Efficacy of sulbactam alone and in combination with ampicillin in nosocomial infections caused by multiresistant Acinetobacter baumannii. J Antimicrob Chemother, 1998. 42(6): p. 793-802.
56.Garnacho-Montero, J., et al., Treatment of multidrug-resistant Acinetobacter baumannii ventilator-associated pneumonia (VAP) with intravenous colistin: a comparison with imipenem-susceptible VAP. Clin Infect Dis, 2003. 36(9): p. 1111-8.
57.Higgins, P.G., et al., In vitro activities of the beta-lactamase inhibitors clavulanic acid, sulbactam, and tazobactam alone or in combination with beta-lactams against epidemiologically characterized multidrug-resistant Acinetobacter baumannii strains. Antimicrob Agents Chemother, 2004. 48(5): p. 1586-92.
58.Levin, A.S., Multiresistant Acinetobacter infections: a role for sulbactam combinations in overcoming an emerging worldwide problem. Clin Microbiol Infect, 2002. 8(3): p. 144-53.
59.Urban, C., et al., Interaction of sulbactam, clavulanic acid and tazobactam with penicillin-binding proteins of imipenem-resistant and -susceptible acinetobacter baumannii. FEMS Microbiology Letters, 1995. 125(2-3): p. 193-197.
60.Papp-Wallace, K.M., et al., Early insights into the interactions of different β-lactam antibiotics and β-lactamase inhibitors against soluble forms of Acinetobacter baumannii PBP1a and Acinetobacter sp. PBP3. Antimicrob Agents Chemother, 2012. 56(11): p. 5687-92.
61.Penwell, W.F., et al., Molecular mechanisms of sulbactam antibacterial activity and resistance determinants in Acinetobacter baumannii. Antimicrob Agents Chemother, 2015. 59(3): p. 1680-9.
62.Graves, P.R. and T.A. Haystead, Molecular biologist's guide to proteomics. Microbiol Mol Biol Rev, 2002. 66(1): p. 39-63; table of contents.
63.Wasinger, V.C., et al., Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis, 1995. 16(7): p. 1090-4.
64.Pandey, A. and M. Mann, Proteomics to study genes and genomes. Nature, 2000. 405(6788): p. 837-46.
65.Naidoo, N., et al., Human genetics and genomics a decade after the release of the draft sequence of the human genome. Hum Genomics, 2011. 5(6): p. 577-622.
66.Cho, W.C., Proteomics technologies and challenges. Genomics Proteomics Bioinformatics, 2007. 5(2): p. 77-85.
67.Wilkins, M.R., et al., Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev, 1996. 13: p. 19-50.
68.Henzel, W.J., et al., Identifying Proteins from Two-Dimensional Gels by Molecular Mass Searching of Peptide Fragments in Protein Sequence Databases. Proceedings of the National Academy of Sciences of the United States of America, 1993. 90(11): p. 5011-5015.
69.James, P., et al., Protein identification by mass profile fingerprinting. Biochem Biophys Res Commun, 1993. 195(1): p. 58-64.
70.Aebersold, R. and D.R. Goodlett, Mass spectrometry in proteomics. Chem Rev, 2001. 101(2): p. 269-95.
71.Bakhtiar, R. and R.W. Nelson, Mass spectrometry of the proteome. Mol Pharmacol, 2001. 60(3): p. 405-15.
72.Yates, J.R., 3rd, Mass spectrometry. From genomics to proteomics. Trends Genet, 2000. 16(1): p. 5-8.
73.Kondo, T. and S. Hirohashi, Application of highly sensitive fluorescent dyes (CyDye DIGE Fluor saturation dyes) to laser microdissection and two-dimensional difference gel electrophoresis (2D-DIGE) for cancer proteomics. Nat Protoc, 2006. 1(6): p. 2940-56.
74.Karas, M. and F. Hillenkamp, Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem, 1988. 60(20): p. 2299-301.
75.Fenn, J.B., et al., Electrospray ionization for mass spectrometry of large biomolecules. Science, 1989. 246(4926): p. 64-71.
76.Marvin, L.F., M.A. Roberts, and L.B. Fay, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in clinical chemistry. Clin Chim Acta, 2003. 337(1-2): p. 11-21.
77.Finnigan, R.E., Quadrupole mass spectrometers. Analytical Chemistry, 1994. 66(19): p. 969A-975A.
78.Mitrophanov, A.Y. and E.A. Groisman, Signal integration in bacterial two-component regulatory systems. Genes Dev, 2008. 22(19): p. 2601-11.
79.Lingzhi, L., et al., The role of two-component regulatory system in β-lactam antibiotics resistance. Microbiol Res, 2018. 215: p. 126-129.
80.Gutu, A.D., et al., Polymyxin resistance of Pseudomonas aeruginosa phoQ mutants is dependent on additional two-component regulatory systems. Antimicrob Agents Chemother, 2013. 57(5): p. 2204-15.
81.Fernando, D. and A. Kumar, Growth phase-dependent expression of RND efflux pump- and outer membrane porin-encoding genes in Acinetobacter baumannii ATCC 19606. J Antimicrob Chemother, 2012. 67(3): p. 569-72.
82.Richmond, G.E., et al., The Acinetobacter baumannii Two-Component System AdeRS Regulates Genes Required for Multidrug Efflux, Biofilm Formation, and Virulence in a Strain-Specific Manner. mBio, 2016. 7(2): p. e00430-16.
83.Marchand, I., et al., Expression of the RND-type efflux pump AdeABC in Acinetobacter baumannii is regulated by the AdeRS two-component system. Antimicrob Agents Chemother, 2004. 48(9): p. 3298-304.
84.Lin, M.F., Y.Y. Lin, and C.Y. Lan, The Role of the Two-Component System BaeSR in Disposing Chemicals through Regulating Transporter Systems in Acinetobacter baumannii. PLoS One, 2015. 10(7): p. e0132843.
85.Lin, M.F., et al., Role of the BaeSR two-component system in the regulation of Acinetobacter baumannii adeAB genes and its correlation with tigecycline susceptibility. BMC Microbiol, 2014. 14: p. 119.
86.Russo, T.A., et al., The Response Regulator BfmR Is a Potential Drug Target for Acinetobacter baumannii. mSphere, 2016. 1(3).
87.Cai, X.H., et al., Searching for potential drug targets in two-component and phosphorelay signal-transduction systems using three-dimensional cluster analysis. Acta Biochim Biophys Sin (Shanghai), 2005. 37(5): p. 293-302.
88.Dbeibo, L., et al., Evaluation of CpxRA as a Therapeutic Target for Uropathogenic Escherichia coli Infections. Infect Immun, 2018. 86(3).
89.Wilke, K.E., S. Francis, and E.E. Carlson, Inactivation of multiple bacterial histidine kinases by targeting the ATP-binding domain. ACS Chem Biol, 2015. 10(1): p. 328-35.
90.Guex, N. and M.C. Peitsch, SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis, 1997. 18(15): p. 2714-23.
91.Schwede, T., et al., SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res, 2003. 31(13): p. 3381-5.
92.Biasini, M., et al., SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res, 2014. 42(Web Server issue): p. W252-8.
93.Kuroda, T. and T. Tsuchiya, Multidrug efflux transporters in the MATE family. Biochim Biophys Acta, 2009. 1794(5): p. 763-8.
94.Rajamohan, G., V.B. Srinivasan, and W.A. Gebreyes, Molecular and functional characterization of a novel efflux pump, AmvA, mediating antimicrobial and disinfectant resistance in Acinetobacter baumannii. J Antimicrob Chemother, 2010. 65(9): p. 1919-25.
95.Srinivasan, V.B., G. Rajamohan, and W.A. Gebreyes, Role of AbeS, a novel efflux pump of the SMR family of transporters, in resistance to antimicrobial agents in Acinetobacter baumannii. Antimicrob Agents Chemother, 2009. 53(12): p. 5312-6.
96.Li, X.Z. and H. Nikaido, Efflux-mediated drug resistance in bacteria: an update. Drugs, 2009. 69(12): p. 1555-623.
97.Al-Hamad, A., M. Upton, and J. Burnie, Molecular cloning and characterization of SmrA, a novel ABC multidrug efflux pump from Stenotrophomonas maltophilia. Journal of Antimicrobial Chemotherapy, 2009. 64(4): p. 731-734.
98.Li, X.Z., P. Plésiat, and H. Nikaido, The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev, 2015. 28(2): p. 337-418.
99.Fernández, L. and R.E. Hancock, Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin Microbiol Rev, 2012. 25(4): p. 661-81.
100.Blair, J.M., G.E. Richmond, and L.J. Piddock, Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol, 2014. 9(10): p. 1165-77.
101.Webber, M.A. and L.J. Piddock, The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother, 2003. 51(1): p. 9-11.
102.Vashist, J., et al., Quantitative profiling and identification of outer membrane proteins of beta-lactam resistant strain of Acinetobacter baumannii. J Proteome Res, 2010. 9(2): p. 1121-8.
103.Magnet, S., P. Courvalin, and T. Lambert, Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob Agents Chemother, 2001. 45(12): p. 3375-80.
104.Wimberly, B.T., et al., Structure of the 30S ribosomal subunit. Nature, 2000. 407(6802): p. 327-39.
105.Stöffler, G., et al., Letter: Inhibition of protein L7-L12 binding to 50 S ribosomal cores by antibodies specific for proteins L6, L10 and L18. J Mol Biol, 1974. 86(1): p. 171-4.
106.Pettersson, I. and C.G. Kurland, Ribosomal protein L7/L12 is required for optimal translation. Proc Natl Acad Sci U S A, 1980. 77(7): p. 4007-10.
107.Mailloux, R.J., J. Lemire, and V.D. Appanna, Metabolic networks to combat oxidative stress in Pseudomonas fluorescens. Antonie Van Leeuwenhoek, 2011. 99(3): p. 433-42.
108.Hartl, F.U., Molecular chaperones in cellular protein folding. Nature, 1996. 381(6583): p. 571-9.
109.Fenton, W.A. and A.L. Horwich, GroEL-mediated protein folding. Protein Sci, 1997. 6(4): p. 743-60.
110.Morimoto, R.I., et al., The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones. Essays Biochem, 1997. 32: p. 17-29.
111.Champomier-Vergès, M.C., et al., Lactic acid bacteria and proteomics: current knowledge and perspectives. J Chromatogr B Analyt Technol Biomed Life Sci, 2002. 771(1-2): p. 329-42.
112.Frees, D. and H. Ingmer, ClpP participates in the degradation of misfolded protein in Lactococcus lactis. Mol Microbiol, 1999. 31(1): p. 79-87.
113.Hartke, A., et al., Differential induction of the chaperonin GroEL and the Co-chaperonin GroES by heat, acid, and UV-irradiation in Lactococcus lactis subsp. lactis. Curr Microbiol, 1997. 34(1): p. 23-6.
114.Jayaraman, G.C., J.E. Penders, and R.A. Burne, Transcriptional analysis of the Streptococcus mutans hrcA, grpE and dnaK genes and regulation of expression in response to heat shock and environmental acidification. Mol Microbiol, 1997. 25(2): p. 329-41.
115.Lemos, J.A., Y.Y. Chen, and R.A. Burne, Genetic and physiologic analysis of the groE operon and role of the HrcA repressor in stress gene regulation and acid tolerance in Streptococcus mutans. J Bacteriol, 2001. 183(20): p. 6074-84.
116.Cardoso, K., et al., DnaK and GroEL are induced in response to antibiotic and heat shock in Acinetobacter baumannii. J Med Microbiol, 2010. 59(Pt 9): p. 1061-1068.
117.Wen, S.H., et al., Sulbactam-enhanced cytotoxicity of doxorubicin in breast cancer cells. Cancer Cell Int, 2018. 18: p. 128.