研究生: |
胡尹薰 |
---|---|
論文名稱: |
以蒙地卡羅方法研究細胞之微劑量 Study of Cellular Microdosimetry by Monte Carlo Simulation |
指導教授: | 董傳中 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 50 |
中文關鍵詞: | 蒙地卡羅 、細胞 、微劑量 |
外文關鍵詞: | Monte Carlo, Cell, Microdosimetry |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
美國核醫學會MIRD小組發表細胞S值來評估在微小體積中的輻射劑量大小,惟未提供與生物效應有關之輻射品質的數據。本研究利用蒙地卡羅模擬程式計算細胞微劑量學之輻射品質與輻射劑量,並與MIRD小組所發表的細胞S值相比較,以驗證及分析MIRD數據的精確度與限制性。本研究利用PENELOPE粒子遷移程式模擬電子自細胞內源區射出,然後遷移至細胞內靶區造成之能量沈積,再據以求得細胞S值、線性能量分布、頻率平均線性能量等微劑量學參數。本研究主要模擬兩種不同大小的細胞,將源區與靶區分別設定為細胞核、細胞質、細胞膜、與整個細胞。在細胞S值的比較上,本研究發現MIRD和所模擬出來的結果在低能量的部份有比較大的差異;若不考慮PENELOPE中彈性散射的部份,則模擬所得的細胞S值會很接近MIRD所發表的數值。不論在細胞S值或頻率平均線性能量的評估上,若初始能量的電子射程越接近靶區的大小時,數值越大。上述的研究結果,雖然只針對單能量的電子,但因核子醫學中使用的放射性核種,可視為由不同能量電子組成的射源,因此本研究的結果可直接應用於放射性核種的細胞S值和頻率平均線性能量的計算。藉由這些計算可作為核醫藥物生物效應評估的依據,依不同的細胞內源區與靶區的組合,來評估最有效的核醫診斷與治療。
1 ICRP Publication 30: Limits for the Intake of
Radionuclides by Workers, Part 1, 30 Edited By .
International Commission on Radiological Protection
ISBN: 0-08-022638-8, Year: 1979
http://www.elsevierhealth.com/title.cfm?ISBN=0080226388
2 ICRP Publication 66: Human Respiratory Tract Model for
Radiological Protection, 66 Edited By . International
Commission on Radiological Protection
ISBN: 0-08-041154-1, Year: 1995
http://www.elsevierhealth.com/title.cfm?ISBN=0080411541
3 Microdosimetry, ICRU Report 36, Bethesda, Maryland,
U.S.A., (1983).
4 Rossi H., Zaider M., (1996)”Microdosimerty and its
application”, Springer, NY, U.S.A.
5 Roger W. Howell, Lionel G. Bouchet, Wesley E. Bolch,
Dandamudi V. Rao, S. Murty Goddu, (1999)“Mird Cellular
S. Values: Self-Absorbed Dose Per Unit Cumulated Activity
for Selected Radionuclides and Monoenergetic Electron and
Alpha Particle Emitters Incorporated into”
6 董傳中,”微劑量學簡介”,中華放射線醫誌 4:183-188,1979
7 ICRU Report 33,“Radiation Quantities and Units”
8 Isräel MCG. (1971) “An Atlas of bone-Marrow.”Third
Edition. London: William Heinemann
9 Wickramasinghe SN. (1986) “Blood and Bone Marrow.”
Third Edition. Systemic Pathology. Volume 2. Edinburgh:
Churchill Livingstone
10 Roger W. Howell, Lionel G. Bouchet, Wesley E. Bolch,
Dandamudi V. Rao, S. Murty Goddu, (1999) “Mird Cellular
S. Values: Appendix IV.”
11 Nelson W. R., Hirayama H. and Rogers D. W. O (1985)
“The EGS4 code system SLAC-265”
http://www.slac.stanford.edu/pubs/slacreports/slac-r
265.html
12 Briesmeister J. F. (ed) (1997) “MCNPtm—A General Monte
Carlo N-Particle Transport Code”, Version 4B LA-12625-
M, Version 4B (Los Alamos, NM: Los Alamos National
Laboratory)
13 Seltzer S. M. (1988) ”An overview of ETRAN Monte Carlo
methods Monte Carlo Transport of Electrons and Photons”
ed Jenkins T. M., Nelson W. R. and Rindi A. (New York:
Plenum) pp 153–181
14 Wilson W. E. and Paretzke H. G. (1981) ”Calculations of
distributions for energy imparted and ionization by fast
protons in nanometer sites.” Radiat. Res. 87 521–37
15 Turner J. E., Magee J. L., Wright H. A., Chatterjee A.,
Hamm R. N. and Ritchie R. H. (1983) ”Physical and
chemical development of electron tracks in liquid
water.”Radiat. Res. 96 437–49
16 Wilson W. E., Miller J Hand Nikjoo H1994 “PITS: A code
set for positive ion track structure Computational
Approaches in Molecular Radiation Biology”ed M N Varma
and A Chatterjee (New York: Plenum) pp 137–50
17 Wilson W. E. and Nikjoo H. (1999)“A Monte Carlo code
for positive ion track simulation.”Radiat. Environ.
Biophys. 38 97–104
18 Sempau J., Acosta E., Baró J., Fernández-Varea J M.,
Salvat F. (1997), Nucl. Instrum. and Meth. B132377-390.
19 Salvat F., Fernández-Varea J M., Baró J. and Sempau J.,
(1996) Informes Tecnicos CIEMAT n.799 (CIEMAT, Madrid)
20 Salvat F., Fernandez-Varea J.M., Acosta E. and Sempau
J.,"PENELOPE – A Code System for Monte Carlo Simulation
of Electron and Photon Transport (version 2001)”.
ISBN 92-64-18475-9
21 OECD Nuclear Energy Agency Data Bank. Le Seine Saint-
Germain, 12 Boulevard des Iles. 92130 Issy-les
Moulineaux, France. http://www.nea.fr
22 Radiation Safety Information Computational Center. P.O.
Box 2008, Oak Ridge, TN 37831-6362, USA.
http://www-rsicc.ornl.gov
23 Berger M. J. and Wang R. (1988) “Multiple-scattering
angular deflections and energy-loss straggling”in Monte
Carlo Transport of Electrons and Photons eds. Jenkins T.
M., Nelson W. R. and Rindi A. (New York: Plenum) p21-56
24 Benedito E., Fernández-Varea J M. and Salvat F.(2001),
”Mixed simulation of the multiple elastic scattering of
electrons and positrons using partial-wave differential
cross section”, Nucl. Instrum. and Meth. B 174 91-110.
25 Wentzel G.(1927),”Zwei Bemerkungen über die
Zerstreuung korpusklarer Strahlen als
Beugungserscheinung,Z.Phys. 40,590-593
26 Fernández-Varea J. M.,R. Mayol, J.Baró and F. Salvat
(1993b) Nucl. Instrum. and Meth. B 73 447-473.
27 Bethe. H.A.(1930) .”Zur Therrie des Durchgangs
schneller Korpurkularstrahlen durch Materie”.Ann.
Physik 5 325-400
28 Bethe. H.A.(1932) .”Bremsformel für Elecktronen
relativistischer Geschwindigkeit". Ann. Physik 76.293-299
29 Fano U.(1954) ,”Inelastic collisions and the theory of
multiple scattering”.Phys. Rev.93,117-120
30 Manson S.T.(1972) ,”theoretical study of generalized
oscillator strengths in atoms: comparison with
experiment and other calculation”.Phys. Rev.A 5,668-677
31 Salvat F., Fernández-Varea J. M. (1992) ,"Semiempirical
cross section for the simulation of the energy loss of
electrons and positrons in matter”, Nucl. Instrum.
Meth. B 63 255-269.
32 C.J. Tung, C.S. Liu, J.P. Wang, S.L. Chang,
“Calculations of cellular microdosimetry parameters for
alpha particles and electrons. ”, Applied Radiation and
Isotopes 61 (2004) 739–743