簡易檢索 / 詳目顯示

研究生: 林政翰
Lin, Jheng-Han
論文名稱: 多層次生物多樣性指標分解:統計估計與軟體開發
Hierarchical Decomposition of Biodiversity Indices:Statistical Estimation and Software Development
指導教授: 趙蓮菊
CHAO, LIEN-JU
口試委員: 邱春火
CHIU, CHUN-HUO
林宜靜
LIN, YI-CHING
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 168
中文關鍵詞: 多層次生物多樣性多層次分解
外文關鍵詞: Hierarchical, Biodiversity, Hierarchical Decomposition
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物多樣性在生態研究與保育政策的制定上佔有重要角色。在傳統上,多樣性指標僅在探討單一群落或群落間的關係,即以單一層次的觀點來描述生態系,然而多樣性的衡量並不能僅侷限在區域性的群落中,必須整合各區域的資訊,才能了解整個生態系統的關係與狀態。現今因科技快速進步,巨量數據的時代已經來臨,因此以結構關係來衡量多樣性勢在必行,多層次架構將扮演衡量生態系統的重要角色,以宏觀的角度來建構指標,利用層次結構間來了解生態系中層次的關係與差異。
    本文基於 Hill 指標族以及乘法分解的概念,加入個體數權重的資訊來建構多層次多樣性分解(hierarchical decomposition),並且定義標準化的相異性指標,來衡量層次間的差異程度。文中分為兩個部份進行討論,第一部分以物種多樣性、第二部分則是以系統演化多樣性來建立多層次架構。兩部分均介紹多層次架構、指標分解形式以及應用限制,並以統計方法來估計指標、提出利用拔靴法來估計指標標準差。經由電腦模擬,驗證本文推廣估計量與最大概似估計量的優劣,模擬結果顯示本文推廣估計量不論在偏誤(Bias)及均方根誤差(RMSE)都有較好的表現。並於兩章節後各分析一筆真實資料,介紹多層次生物多樣性分解架構的實際應用。
    此外,透過 R 語言以及其網路套件 Shiny,將本文的內容編寫成簡易且方便的互動式分析網頁軟體,只須依照指示建立並上傳資料即可進行計算,方便無程式背景的使用者使用此網頁軟體進行分析。


    Biodiversity measures plays a very important role in ecological research and conservation studies. Traditionally, biodiversity measures are used to quantify variability among organisms in a single community, i.e. only a single-level of ecological system is considered. However, natural systems often includes multiple-level hierarchical structure. In order to quantify diversity across different levels, diversity partitioning in multiple-level structure is needed. Nowadays, because of the rapid progress of science and technology, big data have become prevalent in biodiversity studies; most such data involve multiple-level structures. Therefore, hierarchical analyses across multiple levels is essential to understand the relationship and the differences among natural systems.
    Based on Hill number and multiplicative decomposition, this thesis deals with hierarchical decomposition of species diversity and phylogenetic diversity under a specified multi-level hierarchical structure. Standardized dissimilarity indices to measure the difference among units at each level are also derived. Statistical estimation of the hierarchical diversity measures is discussed and their variances are assessed by using the Bootstrapping method. Simulation results are used to show that the proposed estimators have better performance than the maximum likelihood estimator in terms of bias and root mean square error (RMSE). Real data sets are used for illustrating practical application of the proposed hierarchical analyses and estimation.
    In addition, using R language and its network package Shiny, an online software with simple interactive interface is developed to facilitate the application of the proposed estimation methods for users without R.

    目錄 第一章 緒論 1 第二章 抽樣方法、模式假設、符號說明與文獻回顧 5 2.1 抽樣方法與模式假設 5 2.2 符號說明 7 2.2.1 單一群落符號 7 2.2.2 多群落符號 8 2.2.3 物種多層次分解架構符號 11 2.2.4 系統演化多層次分解架構符號 15 2.3 單一群落多樣性文獻回顧 18 2.3.1 單一群落物種多樣性 18 2.3.2 系統演化多樣性 23 2.4 多群落多樣性相關文獻回顧 28 2.4.1 多群落物種多樣性 30 2.4.2 多群落系統演化多樣性 35 第三章 物種多層次分解架構 37 3.1 分解形式與架構建立 37 3.2 結構與應用限制 45 3.3 相異性指標轉換與定義 48 3.4 物種多層次多樣性指標估計 51 3.5 標準差估計方法 58 3.5.1 拔靴母體生成 59 3.5.2 拔靴法流程介紹 62 3.6 模擬研究與討論 64 3.6.1 模擬設定說明 64 3.6.2 模擬結果 67 3.7 實例分析 68 3.7.1 哥斯大黎加熱帶雨林 69 第四章 系統演化多層次分解架構 75 4.1 分解形式與架構建立 75 4.2 結構與應用限制 82 4.3 相異性指標轉換與定義 83 4.4 物種多層次多樣性指標估計 86 4.5 標準差估計方法 94 4.5.1 拔靴母體生成 94 4.5.2 拔靴法流程 97 4.6 模擬研究與討論 98 4.6.1 模擬設定說明 98 4.6.2 模擬結果 100 4.7 實例分析 102 4.7.1 墨西哥蝙蝠資料 102 第五章 網頁開發與介紹 107 5.1 簡介 107 5.2 介面介紹與使用說明 107 5.3 介面輸出 109 第六章 結論與後續研究 112 參考文獻 114 附錄 117 附錄A 平衡架構b多樣性指標範圍之證明 117 附錄B 物種多層次架構模擬 121 附錄C 物種多層次架構模擬 133 附錄D 系統演化多層次架構模擬 145 附錄E 系統演化多層次架構模擬 157

    參考文獻
    [1] Allen, B., Kon, M., & Bar-Yam, Y. (2009). A new phylogenetic diversity measure generalizing the Shannon index and its application to phyllostomid bats. The American Naturalist, 174(2), 236-243.
    [2] Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scandinavian Journal of statistics, 11, 265-270.
    [3] Chao, A., & Shen, T. J. (2003). Nonparametric estimation of Shannon’s index of diversity when there are unseen species in sample. Environmental and ecological statistics, 10(4), 429-443.
    [4] Chao, A., Chiu, C. H., & Jost, L. (2010). Phylogenetic diversity measures based on Hill numbers. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 365(1558), 3599-3609.
    [5] Chao, A., & Jost, L. (2012). Coverage‐based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology, 93(12), 2533-2547.
    [6] Chao, A., Chiu, C. H., & Hsieh, T. C. (2012). Proposing a resolution to debates on diversity partitioning. Ecology, 93(9), 2037-2051.
    [7] Chao, A., & Jost, L. (2015). Estimating diversity and entropy profiles via discovery rates of new species. Methods in Ecology and Evolution, 6(8), 873-882.
    [8] Chao, A., Hsieh, T. C., Chazdon, R. L., Colwell, R. K., & Gotelli, N. J. (2015). Unveiling the species‐rank abundance distribution by generalizing the Good‐Turing sample coverage theory. Ecology, 96(5), 1189-1201.
    [9] Chao, A., & Jost, L. (2015). Estimating diversity and entropy profiles via discovery rates of new species. Methods in Ecology and Evolution, 6(8), 873-882.
    [10] Chazdon, R. L., Colwell, R. K., Denslow, J. S., & Guariguata, M. R. (1998). Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of northeastern Costa Rica (No. Man and the Biosphere Series no. Vol. 20).
    [11] Chiu, C. H., Jost, L., & Chao, A. (2014). Phylogenetic beta diversity, similarity, and differentiation measures based on Hill numbers. Ecological Monographs, 84(1), 21-44.
    [12] Chiu, C. H., Wang, Y. T., Walther, B. A., & Chao, A. (2014). An improved nonparametric lower bound of species richness via a modified good–turing frequency formula. Biometrics, 70(3), 671-682.
    [13] Crist, T. O., Veech, J. A., Gering, J. C., & Summerville, K. S. (2003). Partitioning species diversity across landscapes and regions: a hierarchical analysis of α, β, and γ diversity. The American Naturalist, 162(6), 734-743.
    [14] Crist, T. O., & Veech, J. A. (2006). Additive partitioning of rarefaction curves and species–area relationships: unifying α‐, β‐and γ‐diversity with sample size and habitat area. Ecology letters, 9(8), 923-932.
    [15] Efron, B. (1979). Bootstrap methods: another look at the jackknife. The annals of Statistics, 7, 1-26.
    [16] Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biological conservation, 61(1), 1-10.
    [17] Gotelli, N. J., Chao, A., Colwell, R. K., Hwang, W. H., & Graves, G. R. (2012). Specimen‐Based Modeling, Stopping Rules, and the Extinction of the Ivory‐Billed Woodpecker. Conservation Biology, 26(1), 47-56.
    [18] Hill, M. O. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology, 54(2), 427-432.
    [19] Horn, H. S. (1966). Measurement of" overlap" in comparative ecological studies. The American Naturalist, 100(914), 419-424.
    [20] Hsieh, T. C., & Chao, A. (2017). Rarefaction and Extrapolation: Making Fair Comparison of Abundance-Sensitive Phylogenetic Diversity among Multiple Assemblages. Systematic biology, 66(1), 100-111.
    [21] Jost, L. (2006). Entropy and diversity. Oikos, 113(2), 363-375.
    [22] Jost, L. (2007). Partitioning diversity into independent alpha and beta components. Ecology, 88(10), 2427-2439.
    [23] Jost, L., Chao, A., & Chazdon, R. L. (2011). Compositional similarity and β (beta) diversity. Biological diversity: frontiers in measurement and assessment, A. Magurran y BJ McGill (eds.). Oxford University Press, New York, 66-87.
    [24] Lin, S. Y. (2011). Hierarchical and Space-Time Decomposition of
    Biodiversity Indices. Ph. D. thesis, National Tsing-Hua Uiversity, Hsin-Chu, Taiwan.
    [25] MacArthur, R. H. (1965). Patterns of species diversity. Biological reviews, 40(4), 510-533.
    [26] Medellín, R. A., Equihua, M., & Amin, M. A. (2000). Bat diversity and abundance as indicators of disturbance in Neotropical rainforests. Conservation Biology, 14(6), 1666-1675.
    [27] Morisita, M. (1959). Measuring of interspecific association and similarity between communities. Mem. Fac. Sci. Kyushu Univ. Series E, 3, 65-80.
    [28] Rao, C. R. (1982). Diversity and dissimilarity coefficients: a unified approach. Theoretical population biology, 21(1), 24-43.
    [29] Ricotta, C. (2005). On hierarchical diversity decomposition. Journal of Vegetation Science, 16(2), 223-226.
    [30] Ron Rohrbaugh, Martjan Lammertink, Ken Rosenberg (2007). 2006–07 Ivory-billed Woodpecker Surveys and Equipment Loan Program.
    [31] Routledge, R. D. (1979). Diversity indices: Which ones are admissible?. Journal of theoretical Biology, 76(4), 503-515.
    [32] Shannon, C. E., & Weaver, W. (1949). University of Illinois Press. Urbana, 104-107.
    [33] Simpson, E. H. (1949). Measurement of diversity. Nature.
    [34] Whittaker, R. H. (1960). Vegetation of the Siskiyou mountains, Oregon and California. Ecological monographs, 30(3), 279-338.
    [35] Whittaker, R. H. (1972). Evolution and measurement of species diversity. Taxon, 213-251.

    QR CODE