研究生: |
連健宏 Lien, Chien-Hung |
---|---|
論文名稱: |
不同合金比例及堆疊高介電層之金氧半電晶體之電特性研究 Electrical Characteristics for MOSFET with High-k of Various Alloys and Stacks |
指導教授: |
張廖貴術
Chang-Liao, Kuei-Shu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2008 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 110 |
中文關鍵詞: | MOSFET 、high-k dielectric 、metal gate 、HfAlO alloy |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了改善MOSFET的性能,元件的尺寸被要求越來越小,在未來CMOS技術中等效氧化層厚度(EOT)甚至被要求縮小到1.0 nm以下。然而,當二氧化矽縮小到1.5nm以下時穿隧電流變得相當顯著,導致有很大的汲極漏電流產生。High-k介電層可用來減少這個漏電流發生,因為較厚的介電層可以減少電子或電洞穿越閘極介電層的可能,使得穿隧電流可以被減少。
第一部份我們在High-k dielectric與Si之間利用化學溶液來成長化學氧化層,使High-k dielectric與Si有較佳之界面特性。由實驗結果我們觀察到,使用75℃雙氧水成長化學氧化層之MOSFET元件,有著較好的電特性以及可靠度,顯示使用75℃雙氧水成長化學氧化層之元件有著較佳的界面特性。
第二部份我們使用ALD機台沈積不同的high-k材料作為介電層,使其形成TaN/high-k dielectric/SiO2/Si的MOSFET元件。由實驗結果得知使用HfO2作為介電層之元件,有著較佳的電特性,其中載子遷移率最大可到110(cm2/V-s),遠大於使用HfAlO作為介電層之元件。在可靠度方面,使用HfAlO(Hf:Al=1:1)作為介電層之元件經Stress後有著較小的臨界電壓漂移及最大轉導值退化比例,顯示摻雜Al至HfO2有助於提昇元件可靠度。
第三部份我們利用不同Al比例之HfO2/HfAlO堆疊式結構來作為閘極介電層。由實驗結果發現使用HfO2/HfAlO(Hf:Al=3:1)作為介電層之元件有較大的飽和汲極電流、最大轉導值及載子遷移率。而使用HfO2/HfAlO(Hf:Al=1:1)之元件經Stress後有較佳的可靠度。而使用HfO2/ HfAlO堆疊式結構作為介電層較使用HfAlO作為單層介電層之元件有較好之電特性。
1]IBM J. RES. & DEV by H. –S. P. Wong
[2]S. M. Sze, “Physics of Semiconductor Devices”, Second printing July, p.469-486
[3]Yuan Taur, et al., First published 1998, Reprinted, p.161, 187, 1999.
[4]Buchanan, et al., Microelectron. Eng., Vol36, pp.13-20, 1997.
[5]H. S. Momose, et al., IEEE Trans. Electron Devices, vol. 43, p.1223, Aug. 1996
[6]Tung Ming Pan, et al., Appl. Phys. Lett. vol.78, p.1439
[7]A. I. Kingon, J. P.Maria, S. K. Streiffer, Nature 406, p.1032
[8]T. H. Hou , et al., Meeting of the Electrochemical Society, Salt
[9]G. D. Wilk, R. M. Wallace, et al., J. Appl. Phys. 87, p.484, 2000
[10]G. D. Wilk, et al., J. Appl. Phys. 89, p.5243, 2001
[11]A. Kumar, D. Rajdev, et al., J. Am. Chem. Soc. 55, p.439, 1972
[12]C. Hobbs, et al., IEEE IEDM. 30.1.1, 2001
[13]S. Saito, et al., IEDM, p.7, 2003
[14]E Gusev,IEDM., MRS Bull, 2001
[15]G.D. Wilk, et al., Symposium On VLSI Technology Digest of Technical, p.88, 2002
[16]F. De Smedt, et al., Journal of the Electrochemical Society,146 , 5, p.1873, 1999
[17]W. Zhu, et al., IEEE Trans. Electron Devices, vol. 51, no. 1, pp. 98–100, Jan. 2004
[18]A. L. P. Rotondaro, et al., IEEE Electron Device Lett., vol. 23, no. 10, pp. 603–605, Oct. 2002
[19]W. J. Zhu et al., IEEE Electron Device Letters, Vol.25, NO.2, pp.89-91, 2004
[20]S. I. Takagi et al., IEEE Trans. Electron Devices, Vol. 41, NO.12, pp.2357-2362, 1994
[21]R. Woltjer, et al., IEEE Trans. Electron Devices, Vol. 42, pp.109-115, 1995
[22]T.P.Ma, IEEE Trans. Electron Device, vol. 45, p.680, March 1998.
[23]G.D.Wilk, et al., Journal of Applied Physics, vol.89,pp5243-5275,2001
[24]K. Yamamoto, et al., Appl. Phys. Lett. pp.2053-5, Vol 81, 2002
[25]C.L. Cheng, et al., Appl. Phys. Lett. Vol86, pp.212902-3, 2005
[26]C.S. Kang, et al., IEEE Transactions on Electron Devices, Vol 51,
pp .220-7, 2004
[27]X. Wang, et al., IEEE Transactions on Electron Devices, Vol51,
pp.1798-4, 2004
[28]B. Djezzar, Symp. Nuclear Science, pp.234-9, 2001
[29]D.M. Fleetwood, IEEE Transcactions on Nuclear Science, Vol 43,
pp.779-6, 1996
[30]X. Yu, et al., IEEE Electron Device Lett. Vol25,pp.501-3, 2004
[31]S. Mudanai, et al., IEEE Electron Device Lett. ,Vol 23,pp.728-0,2002
[32]D.K. Schroder, “Semiconductor material and device
characterization,” John wiley & Sons, pp.337-8,1998
[33]P.O. Hahn, et al., J.Vac. Sci. Technol. A, Vol 2, pp. 574-3, 1984
[34]T.Yamanka, et al.,IEEE Electron Device Lett., Vol 17, pp.178-0, 0996
[35]W.K. Chim et al., J. Appl. Phys., Vol93, pp.4788-3, 2003
[36]Heyns, et al., VLSI Technology, Systems, and Applications, International Symposium, p.247, 2003
[37]J.F. Conley, et al., Electrochem. and Sol. State Lett., pp.108-112, 2002
[38]G.D. Wilk, et al., Symposium on VLSI Technology Digest of Technical, p88, 2002
[39]C. D. Young, et al., “Electron Trap Generation in High-k Gate Stacks by Constant Voltage Stress”, IEEE Device and Materail Reliability, Vol. 6, pp. 123-131, June ,2006.
[40]S. Mahapatra, et al., “On the Generation and Recovery of Interface Traps in MOSFETs Subjected to NBTI, FN, and HCI Stress”, IEEE Electric Device, Vol. 53, pp.1583-1592, July 2006.
[41]王義文,”矽及矽鍺金氧半元件之堆疊式高介電層與界面化學氧化層製程研究”,國立清華大學工程與系統科學系,2008
[42] C.D. Young, et al., “Detection of Trap Generation in High-K Gate Stacks”, 2005 IIRW Final Report.
[43]H.M.Bu, et al., IEEE Internaional Reliability Physics Symp., pp.591-592, 2004.
[44]M. A. Quevedo-Lopez, et al. IEDM Tech. Dig., p437 , 2005.
[45]G. D.Wilk, et al., J. Appl. Phys., vol. 87, no. 1, pp. 484–492, 2000
[46]A. Callegari, et al., J. Appl. Phys., vol. 90, no. 12, pp. 6466–6475, 2001
[47]S. H. Bae, et al., IEEE Electron Device Lett. , vol 24, no. 9, 2003
[48]蔡坤宏,” MOCVD成長之閘極介電層HfAlO特性改善並利用氮化處理及矽鍺通道提升金氧半元件特性之研究”,國立清華大學工程與系統科學系,2008
[49] W. K. Chim, et al., J. Appl. Phys. , vol 93, pp.4788-3, 2003