研究生: |
林相宇 Lin, Hsiang-Yu |
---|---|
論文名稱: |
利用柔性運算法針對產品拆解排序問題進行求解 A Soft Computing Algorithm for Disassembly Sequencing |
指導教授: |
葉維彰
Yeh, Wei-Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 49 |
中文關鍵詞: | 拆解 、間斷型例子群演算法 、田口方法 |
外文關鍵詞: | Disassembly, Discrete particle swarm optimization (DPSO), Taguchi methods |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年來,如何處理在產品生命週期末期的產品儼然成為一個重要的課題。 為了能更有效率回收這些產品,適當的拆解這些產品使其成為更小的元件是必須要的動作。然而,拆解的時間常常取決於針對元件拆解的順序。因此,本研究的目的在於配置最適合的元件拆解順序以期達到最小拆解時間。由於此問題為間斷型的整數規劃問題,在這裡我們提出一個間斷型粒子群演算法並結合優先保留交配的觀念來解此間斷型問題。優先保留交配法最初是使用於基因演算法,這裡藉由結合優先保留交配法能避免粒子群演算法的解落入不可行解。為了使演算法能有較高的搜尋效率,我們引用了田口方法來針對演算法中的參數進行最佳化的設計。在本文中,將會提出兩個標竿問題並藉由此間斷型粒子群演算法來求得最佳解。
In recent years, it is an important issue to handle products at the end-of-life (EOL). In order to efficiently recover the EOL products, it is necessary to disassemble the product into several smaller components in this process. However, the disassembly time is a performance index which depends on the disassembly sequence of components. The purpose of the study is to obtain the optimal disassembly sequence of the product which can minimize the disassembly time. In this article, we propose a soft computing algorithm to solve this kind of problem by combining discrete particle swarm optimization (DPSO) with concept of precedence preservative crossover (PPX) in genetic algorithm. Discrete particle swarm optimization (DPSO) is a population based stochastic optimization technique that is used to solve problems in discrete type, and PPX guarantees feasible solution at each of evaluations. In order to have a better result, we apply Taguchi methods to design experiment that was used to obtain the optimization of the parameters of DPSO. Finally, two benchmark problems will show the efficiency of this approach.
[1] M. Thierry, M. Salomon, J. Von Nunen and L. Van Wassenhove, “Strategic issue in product recovery management” ,California Management Review, Vol. 37 No. 2, pp. 114-35.
[2] K. Ishii, B. Lee, “Reverse fishbone diagram: A tool in aid of design for product retirement” , Proceedings of the ASME DET and CIE Conference, 1996.
[3] D. Navin-Chandra, “The recovery problem in product design” ,Journal of Engineering Design, Vol. 5, 1994, pp. 65–86.
[4] J. Kennedy, R. C. Eberhart, “Particle swarm optimization” , In Proc.
IEEE Int. Conf. Neural Networks, Piscataway, November 1995, pp. 1942–1948.
[5] J. Kennedy, R. C. Eberhart, “A discrete binary version of the particle swarm algorithm” , In Proc. Of IEEE Int. Conf. on Systems, Man and Cybernetics, Vol. 5, No. 12-15, 1997, pp.4104-4108.
[6] A.C. Sanderson, L.S. Homem de Mello and H. Zhang, “Assembly sequence planning” , AI Magazine, Vol. 11, No.1, Spring 1990, pp. 62–80.
[7] K.-K. Seo, J.-H. Park, and D.-S. Jang, “Optimal disassembly sequence using genetic algorithms considering economic and environmental aspects” , The International Journal of Advanced Manufacturing Technology, Vol. 18, No. 5, 2001, pp. 371–380.
[8] C. Bierwirth, D.C. Mattfeld and H. Kopfer, “On permutation representations for scheduling problems” , Parallel Problem Solving from Nature IV, eds. H.-M. Voigt, W. Ebeling, I. Rechenberg and H.-P. Schwefel, Springer, Berlin, 1996, pp. 310-318.
[9] C. Bierwirth, D. C. Mattfeld, “Production scheduling and rescheduling with genetic algorithms” , Evolutionary Computation, Vol. 7, NO. 1, 1999, pp. 1–18.
[10] E. Kongar, S. M. Gupta, “Disassembly sequencing using genetic algorithm” , The International Journal of Advanced Manufacturing Technology, Vol. 30, No. 5-6, September 2006, pp. 497-506.
[11] L. Alting, “Designing for a lifetime”, Manufacturing Breakthrough, May/June 1993, pp.29–33.
[12] L. Brennan, S. M. Gupta, K. N. Taleb, “Operations planning issues in an assembly/disassembly environment” , Int J Oper Prod Mgmt, Vol.14, No.9, 2001, pp.57–67.
[13] A. Gungor, S. M. Gupta, “An evaluation methodology for disassembly process” , Computers and Industrial Engineering, Vol.33 No.1/2, 1997, pp.329–32.
[14]M. Valenzuela–Rendon, E. Uresti–Charre, “A non–generational genetic Algorithm for multiobjective optimization” , 7th international conference on genetic algorithms, 1997, pp.658–665.
[15]B. Lazzerini, F. Marcelloni, “A genetic algorithm for generating optimal assembly plans” , Artifi Intel Eng, Vol.14, 2000 pp.319–329
[16] Keung KW, Ip WH, Lee TC, “The solution of a multiobjective tool selection model using the GA approach” , Int J Adv Manuf Technol, Vol.18, 2001, pp.771–777.
[17] F. Van den Bergh and A.P. Engelbrecht, “Cooperative learning in neural network using particle swarm optimizers” , South African Computer Journal, Vol.26 ,2000 , pp.84–90.
[18] A.I. El–Galland, M.E. El–Hawary and A.A. Sallam, “Swarming of intelligent particles for solving the nonlinear constrained optimization problem” , Engineering Intelligent Systems for Electrical Engineering and Communications Vol.9, 2001, pp.155–163.
[19] M.F. Tasgetiren, M. Sevkli, Y.C. Liang and G. Gencyilmaz, “Particle swarm optimization algorithm for single machine total weighted tardiness problem” , Proceedings of the 2004 Congress on Evolutionary Computation, Portland, Oregon, 2004, pp.1412–1419.
[20] Tasgetiren MF, Liang YC, Sevkli M, Gencyilmaz G., “Particle swarm optimization algorithm for makespan and maximum lateness minimization in permutation flowshop sequencing problem” , In: Proceedings of the fourth international symposium on intelligent manufacturing systems, Turkey, Sakarya; 2004. pp.431–41.
[21]M.F. Tasgetiren and Y.C. Liang, “A binary particle swarm optimization algorithm for lot sizing problem” , Journal of Economic and Social Research, Vo.l.5, No.2, 200, pp.1–20.
[22]J. Moore and R. Chapman, “Application of particle swarm to multiobjective optimization” , Department of Computer Science and Software Engineering, Auburn University, 1999.
[23] Guo, Y.W., Mileham, A.R., Owen, G.W. and Li, W.D., “Operation sequencing optimization using a particle swarm optimisation approach” , Journal of Engineering Manufacture, Part B, Vol.220, No. 12 , 2006, pp.1945–1958.
[24]J. Jerald, P. Asokan, G. Prabaharan, and R. Saravanan, “Scheduling optimisation of flexible manufacturing systems using particle swarm optimisation algorithm” , International Journal of Advanced Manufacturing Technology, Vol.25, 2005, pp.964–971.
[25] Ealey Lance A., “Quality by design Taguchi methods TM, and US industry”, 2nd ed. Sidney: Irwin professional publishin and ASI Press, 1994, pp. 189–207.
[26] Montgomery DC., “Design and analysis of experiments” , 4th ed. New York: John Wiley, 1997.
[27] M.S. Phadke, “Quality Engineering Using Design of Experiments, Quality Control, Robust Design, and the Taguchi Method” , Wadsworth & Books, California, 1988.
[28] S.H. Park, “Robust Design and Analysis for Quality Engineering” , Chapman & Hall, London, 1996.
[29] G. Taguchi and S. Konishi, “Taguchi methods, orthogonal arrays and linear graphs, tools for quality American supplier institute” , American Supplier Institute, 1987, pp. 8–35.
[30] G. Taguchi, “Introduction to quality engineering” , Mc Graw-Hill, New York 1990.
[31] W.H. Yong, and Y.S. Tarng, “Design optimization of cutting parameters for turning operations based on Taguchi method” , J Mater Process Technol 84, 1998 , pp. 122–129.
[32] M. Younes, and M. Rahli, “On the choice of genetic parameters with Taguchi method applied in economic power dispatch” , Leonardo J. Sci, 2006, Vol.9,
pp. 9–24.
[33] WC. Yeh, “A two-stage discrete particle swarm optimization for the problem of multiple multi-level redundancy allocation in series systems”, Expert Systems with Applications, 2009, Vol.36, 192–200.