研究生: |
陳冠任 Chen, Kuan-Jen |
---|---|
論文名稱: |
以二氧化矽包覆之金奈米棒光熱轉換作為溫度躍升法搭配共軛焦螢光系統研究牛血清白蛋白之去摺疊過程 Using SiO2-Coated Gold Nanorods as Temperature Jump Photo-thermal Convertors Coupled with a Confocal Fluorescent Thermometer to Study Unfolding Kinetics of Bovine Serum Albumin |
指導教授: |
朱立岡
Chu, Li-Kang |
口試委員: |
洪嘉呈
Horng, Jia-Cherng 陳仁焜 Chen, Jen-Kun |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 溫度躍升法 、共軛焦螢光系統 、色胺酸 、螢光溫度計 、二氧化矽包覆之金奈米棒 、光熱效應 、牛血清白蛋白 、去摺疊 |
外文關鍵詞: | Temperature jump, Confocal fluorescent thermometer, Tryptophan, Fluorenscent thermometer, SiO2-coated gold nanorods, Photothermal convertor, Bovine serum albumin (BSA), Unfolding |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
不同溫度下蛋白質結構會產生改變並影響其功能,且錯誤的折疊常會導致疾病產生,因此蛋白質折疊以及去摺疊現象成為重要的研究課題。其中溫度躍升實驗為廣泛使用的研究方法。以往溫度躍升實驗搭配螢光偵測的儀器架設,可能會有加熱不均勻的問題,使偵測系統接收到處於不同溫度下的樣品螢光訊號。吾人將改良溫度躍升實驗偵測系統,並觀察牛血清白蛋白的去摺疊現象。在溫度躍升實驗偵測系統中引入共軛焦設置,偵測約10–3 mm3微小體積中的溫度時間側寫,並提供100 μm的空間解析度。以1064 nm脈衝雷射(脈衝寬度約100 μs)激發二氧化矽包覆之金奈米棒(AuNR@SiO2)光熱轉換,並由色胺酸螢光作為溫度計得知溫度躍升幅度可達5 °C。此外,亦使用1550 nm連續波雷射激發水分子,提升樣品至44 °C作為研究牛血清白蛋白去摺疊現象時的起始溫度。於44 °C時的螢光下降比例的時間側寫與室溫下相異,其中包含去摺疊過程的資訊,藉單指數擬合得到75 ± 15 s–1之速率常數。本篇論文證實以二氧化矽包覆之金奈米棒作為溫度躍升實驗光熱轉換材料的可行性,並架設空間暨時間解析溫度躍升螢光系統偵測微小體積內的螢光變化。此系統亦可藉由更換物鏡以及濾波片,作為研究不同蛋白質去摺疊現象的新方法。
The function of proteins strongly depends on their conformations, which alters with the temperatures. Misfolding and aggregation might lead to numerous diseases. Particular attention thus has been given to protein folding and unfolding kinetics in numerous researches. Among miscellaneous relaxation approaches of protein kinetics, temperature jump is frequently used to initiate the protein conformational change. In this work, a confocal fluorescent thermometer was developed to detect the temperature evolution in a small excitation volume of ca. 10–3 mm3 and provide a spatial resolution of 100 μm. Photoexcitation of SiO2-coated gold nanorods (AuNR@SiO2) with a 1,064 nm pulse of ca. 100 μs duration leads to a temperature jump of 5 °C, as determined by the evolution of the fluorescence intensity of tryptophan. In addition, a continuous-wave laser at 1,550 nm was employed to increase the initial temperature to 44 °C by heating H2O, providing alternative initial temperatures for temperature jump experiments to reveal the unfolding kinetics of bovine serum albumin (BSA). The evolution of fluorescence of BSA upon temperature jump when the stationary temperature was raised to 44 °C differed from that at room temperature, suggesting a dynamical unfolding kinetics, and a rate coefficient of 75 ± 15 s–1 was derived. In this work, we successfully demonstrated the applicability of AuNR@SiO2 as the photothermal material for the temperature jump and employment of a confocal fluorescent thermometer to precisely monitor the minuscule heating volume. It would be advantageous to utilize this apparatus as an alternative tool for studying the kinetics of protein unfolding.
第一章
1. Kendrew, J. C.; Bodo, G.; Dintzis, H. M.; Parrish, R. G.; Wyckoff, H.; Phillips, D. C. Nature 1958, 181, 662.
2. Kendrew, J. C.; Dickerson, R. E.; Strandberg, B. E.; Hart, R. G.; Davies, D. R.; Phillips, D. C.; Shore, V. C. Nature 1960, 185, 422.
3. Perutz, M. F.; Rossmann, M. G.; Cullis, A. F.; Muirhead, H.; Will, G.; North, A. C. T. Nature 1960, 185, 416.
4. Anfinsen, C. B. Science 1973, 181, 223.
5. Murphy, K. P.; Privalov, P. L.; Gill, S. J. Science 1990, 247, 5591.
6. Rader, A. J.; Hespenheide, B. M.; Kuhn, L. A.; Thorpe, M. F. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 3540.
7. Hartl, F. U.; Hayer-Hartl, M. Nat. Struct. Mol. Biol. 2009, 16, 574.
8. Dill, K. A.; Callum, J. L. M. Science 2012, 338, 1042.
9. Bryngelson, J. D.; Onuchic, J. N.; Socci, N. D.; Wolynes, P. G. Proteins: Struct. Funct. Genet. 1995, 21, 167.
10. Onuchic, J. N. Annu. Rev. Phys. Chem. 1997, 48, 545.
11. Zhou, R. Proteins: Struct. Funct. Genet. 2003, 53, 148.
12. Mallamace, F.; Corsaro, C.; Mallamace, D.; Vasi, S.; Vasi, C.; Baglioni, P.; Buldyrev, S. V.; Chen, S. H.; Stanley, H. E. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 3159.
13. Fersht, A. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding. W. H. Freeman and Company, 1999.
14. Fersht, R. A.; Matouschek. A.; Serrano, L. J. Mol. Biol. 1992, 224, 771.
15. Fersht, R. A. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 10869.
16. Kim, Y. E.; Hipp, M. S.; Bracher, A.; Hayer-Hartl, M.; Hartl, F. U. Annu. Rev. Biochem. 2013, 82, 323.
17. Bucciantini, M.; Giannoni, E.; Chiti, F.; Baroni, F.; Formigli, L.; Zurdo, J.; Taddei, N.;1, Ramponi, G.; Dobson, C. M.; Stefani, M. Nature 2002, 416, 507.
18. Stefani, M.; Dobson, C. M. J. Mol. Med. 2003, 81, 678.
19. Soto, C. Nat. Rev. Neurosci. 2003, 4, 49.
20. Chiti, F.; Dobson C. M. Annu. Rev. Biochem. 2017, 86, 35.1.
21. Serrano, A. L.; Waegele, M. M.; Gai, F. Protein Sci. 2012, 21,157.
22. Davis, C. M.; Dyer, R. B. J. Am. Chem. Soc. 2016, 138, 1456.
23. Wirth, A. J.; Liu, Y.; Prigozhin, M. B.; Schulten, K.; Gruebele, M. J. Am. Chem. Soc. 2015, 137, 7152.
24. Ding, B.; Hilaire, M. R.; Gai, F. J. Phys. Chem. B 2016, 120, 5103.
25. Meadows, C. W.; Balakrishnan, G.; Kier, B. L.; Spiro, T. G.; Klinman, J. P. J. Am. Chem. Soc. 2015, 137, 10060.
26. Ebbinghaus, S.; Dhar, A.; McDonald, J. D.; Gruebele, M. Nat. Methods 2010, 7, 319.
27. Huang, C.-Y.; Balakrishnan, G.; Spiro, T. G. Biochemistry 2005, 44, 15734.
28. Liu, Y.; Prigozhin, M. B.; Schulten, K.; Gruebele, M. J. Am. Chem. Soc. 2014, 136, 4265.
29. Prigozhin, M. B.; Liu, Y.; Wirth, A. J.; Kapoor, S.; Winter, R.; Schulten, K.; Gruebele, M. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 8087.
30. Causgrove, T. P.; Dyer, R. B. Chem. Phys. 2006, 323, 2.
31. Kubelka, J. Photochem. Photobiol. Sci. 2009, 8, 499.
32. Dyer, R. B.; Gai, F.; Woodruff, W. H.; Gilmanshin, R.; Callender, R. H. Acc. Chem. Res. 1998, 31, 709.
33. Phillips, C. M.; Mizutani, Y.; Hochstrasser, R. M. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 7292.
34. Nölting, B. 2006 Protein folding kinetics. Biophysical Methods. Springer, Berlin.
35. Ameen, S.; Demaeyer, L. J. Am. Chem. Soc. 1975, 97, 1590.
36. Ameen, S. Rev. Sci. Instrum. 1975, 46, 1209.
37. Williams, A. P.; Longfellow, C. E.; Freier, S. M.; Kierzek, R.; Turner, D. H. Biochemistry 1989, 28, 4283.
38. Khuc, M.-T.; Mendonça, L.; Sharma, S.; Solinas, X.; Volk, M.; Hache, F. Rev. Sci. Instrum. 2011, 82, 054302.
39. Jang, B.; Park, J.-Y.; Tung, C.-H.; Kim, I.-H.; Choi, Y. ACS Nano 2011, 5, 1086.
40. Shanmugam, V.; Selvakumar, S.; Yeh, C.-S. Chem. Soc. Rev. 2014, 43, 6254.
41. Qiu, W.-X.; Liu, L.-H.; Li, S.-Y.; Lei, Q.; Luo, G.-F.; Zhang, X.-Z. Small 2017, DOI: 10.1002/smll.201603956.
42. Vankayala, R.; Huang, Y.-K.; Kalluru, P.; Chiang, C.-S.; Hwang, K. C. Small 2014, 10, 1612.
43. Xiong, W.; Mazid, R.; Yap, L. W.; Li, X.; Cheng, W. Nanoscale 2014, 6, 14388.
44. Liu, J.; Detrembleur, C.; De Pauw-Gillet, M.-C.; Mornet, S.; Jérôme, C.; Duguet, E. Small 2015, 11, 2323.
45. Oladipo, A. O.; Oluwafemi, O. S.; Songca, S. P.; Sukhbaatar, A.; Mori, S.; Okajima, J.; Komiya, A.; Maruyama, S.; Kodama, T. Sci. Rep. 2017, 7, 45459.
46. Crut, A.; Maioli, P.; Del Fatti, N.; Vallée, F. Chem. Soc. Rev. 2014, 43, 3921.
47. Smith, A. M.; Mancini, M. C.; Nie, S. Nat. Nanotechnol. 2009, 4, 710.
48. Kobayashi, H.; Longmire, M.R.; Ogawa, M.; Choyke, P. L. Chem. Soc. Rev. 2011, 40, 4626.
49. Hauck, T. S.; Ghazani, A. A.; Chan, W. C. W. Small 2008, 4, 153.
50. Alkilany, A. M.; Nagaria, P. K.; Hexel, C. R.; Shaw, T. J.; Murphy, C. J.; Wyatt, M. D. Small 2009, 5, 701.
51. Alkilany, A. M.; Shatanawi, A.; Kurtz, T.; Caldwell, R. B.; Caldwell, R. W. Small 2012, 8, 1270.
52. Wan, J.; Wang, J.-H.; Liu, T.; Xie, Z.; Yu, X.-F.; Li, W. Sci. Rep. 2015, 5, 11398.
53. Mir, M. A.; Gull, N.; Khan, J. M.; Khan, R. H.; Dar, A. A.; Rather, G. M. J. Phys. Chem. B 2010, 114, 3197.
54. Kumar, E. K.; Prabhu, N. P. Phys. Chem. Chem. Phys. 2014, 16, 24076..
55. Locatelli, E.; Monaco, I.; Franchini, M. C. RSC Adv. 2015, 5, 21681.
56. Malvindi, M. A.; Brunetti, V.; Vecchio, G.; Galeone, A.; Cingolani, R.; Pompa, P. P. Nanoscale 2012, 4, 486.
57. Czymmek, K. J.; Whallon, H.; Klomparens, K. L. Exp. Mycol. 1994, 18, 275.
58. Schrof, W.; Klingler, J.; Heckmann, W.; Horn, D. Colloid Polym. Sci. 1998, 276, 577.
59. Conchello, J. A.; Lichtman, J. W. Nat. Methods. 2005, 2, 920.
60. Petryayeva, E.; Krull, U. J. Anal. Chim. Acta 2011, 706, 8.
61. Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 4212.
62. Chen, Y.; Ming H. Photonic Sensors 2012, 2, 37.
63. Eustis, S.; El-Sayed, M. A. Chem. Soc. Rew. 2006, 35, 209.
64. Myroshnychenko, V.; Rodríguez-Fernández, J.; Pastoriza-Santos, I.; Funston, A. M.; Novo, C.; Mulvaney, P.; Liz-Márzan, L. M.; de Abajo, F. J. G. Chem. Soc. Rew. 2008, 37, 1792.
65. Ghosh, S. K.; Pal, T. Chem. Rev. 2007, 107, 4797.
66. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668.
67. Daniel, M. C.; Astruc, D. Chem. Rev. 2004, 104, 293.
68. Petryayeva, E.; Krull, U. J. Anal. Chim. Acta 2011, 706, 8.
69. Mayer, K. M.; Hafner, J. H. Chem. Rev. 2011, 111, 3828.
70. Foss, C. A.; Hornyak, G. L.; Stockert, J. A.; Martin, C. R. J. Phys. Chem. 1994, 98, 2963.
71. Link, S.; Mohamed, M. B.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 3073.
72. Gans, R. Ann. Phys. 1912, 342, 881.
73. Hu, M.; Chen, J.; Li, Z. Y.; Au, L.; Hartland, G. V.; Li, X.; Marquez, M.; Xia, Y. Chem. Soc. Rev. 2006, 35, 1084.
74. Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Coord. Chem. Rev. 2005, 249, 1870.
75. Cao, J.; Sun, T.; Grattan, K. T. V. Sens. Actuators, B 2014, 195, 332.
76. Link, S.; El-Sayed, M. A. Int. Rev. Phys. Chem. 2000, 19, 409.
77. El-Sayed, M. A. Acc. Chem. Res. 2001, 34, 257.
78. Link, S.; El-Sayed, M. A. Annu. Rev. Phys. Chem. 2003, 54, 331.
79. Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 8410.
80. Link, S.; Burda, C.; Wang, Z. L.; El-Sayed, M. A. J. Chem. Phys. 1999, 111, 1255.
81. Link, S.; Burda, C.; Mohamed, M. B.; Nikoobakht, B.; El-Sayed, M. A. Phys. Rev. B 2000, 61, 6086.
82. Mohanmed, M. B.; Temer, S. A.; Link, S.; Braun, M.; El-Sayed, M. A. Chem.Phys. Lett. 2001, 343, 55.
83. Link, S.; Furube, A.; Mohamed, M. B.; Asahi, T.; Masuhara, H.; El-Sayed, M. A. J. Phys. Chem. B 2002, 106, 945.
84. Link, S.; Hathcock, D. J.; Nikoobakht, B.; El-Sayed, M. A. Adv. Mater. 2003, 15, 5.
85. Voisin, C.; Christofilos, D.; Del Fatti, N.; Vallée, F.; Prével, B.; Cottancin, E.; Lermé, J.; Pellarin, M.; Broyer, M. Phys. Rev. Lett. 2000, 85, 2200.
86. Arbouet, A.; Voisin, C.; Christofilos, D.; Langot, P.; Del Fatti, N.; Vallée, F.; Lermé, J.; Celep, G.; Cottancin, E.; Gaudry, M.; Pellarin, M.; Broyer, M.; Maillard, M.; Pileni, M. P.; Treguer, M. Phys. Rev. Lett. 2003, 90, 177401.
87. Ekici, O.; Harrision, R. K.; Durr, N. J.; Eversole, D. S. E.; Lee, M.; Ben-Yakar, A. J. Phys. D: Appl. Phys. 2008, 41, 185501.
88. Werner, D.; Furube, A.; Okamoto, T.; Hashimoto, S. J. Phys. Chem. C 2011, 115, 8503.
89. Bauer, C.; Abid, J.-P.; Fermin, D.; Girault, H. H. J. Chem. Phys. 2004, 120, 9302.
90. Huang, W.; Qian, W.; El-Sayed M. A. J. Phys. Chem. C 2007, 111, 10751.
91. Sun, C.-K.; Vallée F.; Acioli, L. H.; Ippen, E. P.; Fujimoto, J. G. Phys. Rev. B 1994, 50, 15337.
92. Werner, D.; Hashimoto, S. J. Phys. Chem. C 2011, 115, 5063.
93. Voisin, C.; Christofilos, D.; Del Fatti, N.; Vallée, F.; Prével, B.; Cottancin, E.; Lermé, J.; Pellarin, M.; Broyer, M. Phys. Rev. Lett. 2000, 85, 2200.
94. Hu, M.; Hartland, G. V. J. Phys. Chem. B 2002, 106, 7029.
95. Kumarasinghe, C. S.; Premaratne, M.; Bao, Q.; Agrawa G. P. Sci. Rep. 2015, 5, 12140.
96. Edelhoch, H. Biochemistry 1967, 6, 1948.
97. Royer, C. A. Chem. Rev. 2006, 106, 1769.
98. Zhong, D. Adv. Chem. Phys. 2009, 143, 83.
99. Sherin, P. S.; Snytnikova, O. A.; Tsentalovich, Y. P. Chem. Phy. Let. 2004, 391, 44.
100. Stevenson, K. L.; Papadantonakis, G. A.; LeBreton, P. R. J. Photochem. Photobiol. A 2000, 133, 159.
101. Sherin, P. S.; Snytnikova, O. A.; Tsentalovich, Y. P. J. Chem. Phys. 2006, 125, 144511.
102. Sherin, P. S.; Snytnikova, O. A.; Tsentalovich, Y. P. J. Photochem. Photobiol. A 2004, 162, 371.
103. Gally, J. A.; Edelman, G. Biochim. Biophys. Acta 1962, 60, 499.
104. Robbins, R. J.; Fleming, G. R.; Beddard, S.; Robinson, W.; Thistlethwaite P. J.; Woolfe, G. J. J. Am. Chem. Soc. 1980 , 102 , 6271.
105. Chiu, M. J.; Chu, L. K. Phys. Chem. Chem. Phys. 2015, 17, 17090.
106. Albani, J. R. J. Fluoresc. 2014, 24, 93.
107. Albani, J. R. J. Fluoresc. 2014, 24, 105.
108. Burstein, E. A.; Abornev, S. M.; Reshetnyak, Y. K. Biophys. J. 2001, 81, 1699.
109. Reshetnyak, Y. K., Burstein, E. A. Biophys. J. 2001, 81, 1710.
110. Reshetnyak, Y. K.; Koshevnik, Y.; Burstein, E. A. Biophys. J. 2001, 81, 1735.
111. Sklar, L. A.; Hudson, B. S.; Simon, R. D. Biochemistry 1977, 16, 5100.
112. Sułkowsk, A. J. Mol. Struct. 2002, 614, 227.
113. Medina, J. J. M.; Naso, L. G.; Pérez, A. L.; Rizzi, A.; Okulik, N. B.; Ferrer, E. G.; Williams, P. A. M. J. Photochem. Photobiol. A 2017, 344, 84.
114. Majorek, K. A.; Porebski, P. J.; Dayal, A.; Zimmerman, M. D.; Jablonska, K.; Stewart, A. J.; Chruszcz, M.; Minor, W. Mol. Immunol. 2012, 52, 174.
115. Moriyama, Y.; Ohta, D.; Hachiya, K.; Mitsui, Y.; Takeda, K. J. Protein Chem. 1996, 15, 265.
116. Borzova, V. A.; Markossian, K. A.; Chebotareva, N. A.; Kleymenov, S. Y.; Poliansky, N. B.; Muranov, K. O.; Stein-Margolina, V. A.; Shubin, V. V.; Markov, D. I.; Kurganov, B. I. PLoS ONE 2016, 11, e0153495.
117. Hayakawa, I.; Kajihara, J.; Morikawa, K.; Oda, M.; Fujio, Y. J. Food Sci. 1992, 57, 288.
118. Sadler, P. J.; Tucker, A. Eur. J. Biochem. 1993, 212, 811.
119. Militello, V.; Vetri, V.; Leone, M. Biophys. Chem. 2003, 105, 133.
120. Lin, V. J. C.; Koenig, J. L. Biopolymers 1976, 15, 203.
121. Takeda, K.; Wada, A.; Yamamot, K.; Moriyama, Y.; Aoki, K. J. Protein Chem. 1989, 8, 653.
122. Moriyama, Y.; Kawasaka, Y.; Takeda, K. Protective J. Colloid Interface Sci. 2003, 257, 41.
123. Moriyama, Y.; Watanabe, E.; Kobayashi, K.; Harano, H.; Inui, E.; Takeda, K. J. Phys. Chem. B 2008, 112, 16585.
124. Dey, J.; Kumar, S.; Aswal, V. K.; Panicker, L. V.; Ismailc, K.; Hassan, P. A. Phys. Chem. Chem. Phys. 2015, 17, 15442.
125. Mihalyi, E. J. Chem. Eng. Data. 1968, 13, 179.
126. Chen, R. F. Anal. Lett. 1967, 1, 35.
第二章
1. Faust, B. Modern Chemical Techniques: An Essential Reference for Students and Teachers. Royal Society of Chemistry, 1997, 92.
2. Harvey, D. Modern Analytical Chemistry. McGraw-Hill, 2000, 368.
3. Jensen, T. R.; Malinsky, M. D.; Haynes, C. L.; Van Duyne, R. P. J. Phys. Chem. B 2000, 104, 10549.
4. Prescott, S. W.; Mulvaney P. J. Appl. Phys. 2006, 99, 123504.
5. Roberts, G. C. K. Encyclopedia of Biophysics. Springer, 2013, 316.
6. Greenfield, N.; Fasman, G. D. Biochemistry 1969, 8, 4108.
7. Whitmore, L.; Wallace, B. A. Biopolymers 2008, 89, 392.
8. Skoog, D. A.; Holler, F. J.; Crouch, S. R.; Principles of Instrumental Analysis. Saunders College Publishing, 1992.
9. 羅聖全 研發奈米科技的基本工具之一 電子顯微鏡介紹─TEM. 小奈米大世界
10. 陳建淼; 洪連輝 穿透式電子顯微鏡. 科學Online 科技部高瞻自然科學教學資源平台 2009.
11. 林昆霖 肉眼看不見的奈米級材料及元件檢測分析就靠穿透式電子顯微鏡. 奈米通訊Nano communication 2003, 20, 34-38.
12. Kubelka, J. Photochem. Photobiol. Sci. 2009, 8, 499.
13. Chiu, M. J.; Chu. L. K. Phys. Chem. Chem. Phys. 2015, 17, 17090.
14. Usb4000 Optical Bench Options
https://oceanoptics.com/product-details/usb4000-optical-bench-options/
15. Wallace, B.A.; Janes, R.W. Modern Techniques for Circular Dichroism and Synchrotron Radiation Circular Dichroism Spectroscopy. IOS Press, 2009.
16. Schumacher, E. F. Am. Lab. 2014, 46, 24.
第三章
1. Vigderman, L.; Zubarev, E. R. Chem. Mater. 2013, 25, 1450.
2. Mir, M. A.; Gull, N.; Khan, J. M.; Khan, R. H.; Dar, A. A.; Rather, G. M. J. Phys. Chem. B 2010, 114, 3197.
3. Kumar, E. K.; Prabhu, N. P. Phys. Chem. Chem. Phys. 2014, 16, 24076.
4. Alkilany, A. M.; Shatanawi, A.; Kurtz, T.; Caldwell, R. B.; Caldwell, R. W. Small 2012, 8, 1270.
5. Wan, J.; Wang, J.-H.; Liu, T.; Xie, Z.; Yu, X.-F.; Li, W. Sci. Rep. 2015, 5, 11398.
6. Shanmugam, V.; Selvakumar, S.; Yeh, C. S. Chem. Soc. Rev. 2014, 43, 6254.
7. Locatelli, E.; Monaco, I.; Franchini, M. C. RSC Adv. 2015, 5, 21681.
8. Yi, D. K. A Mater. Lett. 2011, 65, 2319.
9. Huang, P.; Bao, L.; Zhang, C.; Lin, J.; Luo, T.; Yang, D.; He, M.; Li, Z.; Gao, G.; Gao, B.; Fu, S.; Cui, D. Biomaterials 2011, 32, 9796.
10. Malvindi, M. A.; Brunetti, V.; Vecchio, G.; Galeone, A.; Cingolani, R.; Pompa, P. P. Nanoscale 2012, 4, 486.
11. Cong, B.; Kan, C.; Wang, H.; Liu, J.; Xu, H.; Ke, S. J. Mat. Sci. Chem. Eng. 2014, 2, 20.
12. Zhan, Q.; Qian, J.; Li, X.; He, S. Nanotechnology 2010, 21, 055704.
第四章
1. Gally, J. A.; Edelman, G. M. Biochim. Biophys. Acta 1962, 60, 499.
2. Chiu, M. J.; Chu. L. K. Phys. Chem. Chem. Phys. 2015, 17, 17090.
3. Kubelka, J. Photochem. Photobiol. Sci. 2009, 8, 499.
4. Xing, L.; Chen, B.; Li, D.; Ma, J.; Wu, W.; Wang, G. Lasers Med. Sci. 2017, 32, 629.
5. Chen, Y. S.; Frey, W.; Kim, S.; Homan, K.; Kruizinga, P.; Sokolov, K.; Emelianov, S. Opt. Exp. 2010, 18, 8867.
6. Beitz, J. V.; Flynn, G. W.; Turner, D. H.; Sutin, N. J. Am. Chem. Soc. 1970, 92, 4130.
7. Huang, C. Y.; Balakrishnan, G.; Spiro, T. G. Biochemistry 2005, 44, 15734.
8. Khuc, M. T.; Mendonça, L.; Sharma, S.; Solinas, X.; Volk, M.; Hache, F. Rev. Sci. Instrum. 2011, 82, 054302.
9. Takeda, K.; Shigeta, M.; Aoki, K. J. Colloid Interface Sci. 1987, 117, 120.
10. Peter, T. Jr. Adv. Protein Chem. 1985, 37, 161.
11. Majorek, K. A.; Porebski, P. J.; Dayal, A.; Zimmerman, M. D.; Jablonska, K.; Stewart, A. J.; Chruszcz, M.; Minor, W. Mol. Immunol. 2012, 52, 174.
12. Dragan, A. I.; Geddes, C. D. J. Appl. Phys. 2010, 108, 094701.
13. Welsher, K.; McManus, S. A.; Hsia, C. H.; Yin, S.; Yang, H. J. Am. Chem. Soc. 2015, 137, 580.
14. Mortensen, N. P.; Hurst, G. B.; Wang, W.; Foster, C. M.; Nallathamby, P. D.; Retterer, S. T. Nanoscale 2013, 5, 6372.
15. Moriyama, Y.; Kawasaka, Y.; Takeda, K. J. Colloid Interface Sci. 2003, 257, 41.
16. Borzova, V. A.; Markossian, K. A.; Chebotareva, N. A.; Kleymenov, S. Y.; Poliansky, N. B.; Muranov, K. O.; Stein-Margolina, V. A.; Shubin, V. V.; Markov, D. I.; Kurganov, B. I. PLoS ONE 2016, 11, 0153495.
17. Reshetnyak, Y. K.; Koshevnik, Y.; Burstein, E. A. Biophys. J. 2001, 81, 1735.