簡易檢索 / 詳目顯示

研究生: 黃加恩
Chia-En Huang
論文名稱: 基於二維線性系統理論之反覆學習控制器設計及其應用
Toward an Iterative Learning Control Based on Two-Dimensional Linear System Theory and Its Application
指導教授: 陳建祥
Chen, Jian-Shiang
口試委員: 吳尚德
Wu, Shang-Teh
呂有勝
Lu, Yu-Sheng
葉廷仁
Yeh, Ting-Jen
陳榮順
Chen, Rong-Shun
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 96
中文關鍵詞: 二維系統基於濾波器之反覆學習控制羅素模型
外文關鍵詞: Two-Dimensional System, Filter-Based Iterative Learning Control, Roessor’s model
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基於二維(Two-Dimensional, 2-D)線性系統理論,本論文提出了一個基於濾波器之反覆學習控制(Filter-Based Iterative Learning Control, FILC)之控制器及其設計方法,而FILC是由一個反饋控制器和一個前饋濾波器所組成的,本論文將FILC控制系統轉換成2-D線性系統中所謂的“Roessor模型”,由於2-D可分離系統只要滿足一個條件即可證明其穩定,因此為了利用此2-D可分離系統穩定性的條件,本論文技巧性地假設一個新的狀態使整體 FILC控制系統可簡化成可分離系統的2-D系統,如此一來,整個FILC控制系統的收斂性可利用2-D分離系統之穩定性來證明,而且只要滿足一個條件。此外,為了驗證本論文所提出之FILC控制器設計準則,我們建立一個氣壓致動的主動式下肢輔具(Pneumatic Power Active Lower-Limb Orthosis, PPALO),其動態方程式也被建立用來驗證所提出之控制器性能。另外,本論文也採用小波轉換濾波器(Wavelet Transform Filter, WTF)為前饋濾波器來將誤差訊號之可學習的部分萃取出來更新控制訊號,而不可學習的部份則由PD反饋控制器來加以壓制,最後,以PPALO為平台來進行一些軌跡追隨控制的模擬和實驗來驗證本論文所提出的設計方法。


    Based on two-dimensional (2-D) linear system theory, this thesis proposes a design method for a filter-based iterative learning control (FILC) scheme. The FILC scheme consists of a feedback controller and a feedforward filter. The 2-D model for the FILC is established in the form of the so-called “Roessor’s model”. Moreover, stability for a 2-D separable model can be simplified with one criterion to be met. In order to utilize the criterion derived from the 2-D separable system, the overall FILC control system is constructed in the form of a 2-D separable system by assuming a new state for the 2-D model. Therefore, convergence of the overall control system can be proved by stability of 2-D separable model and a condition for convergence of the overall control system can be reached. Moreover, to validate the design criterion of the FILC scheme in this thesis, we develop a pneumatic power active lower-limb orthosis (PPALO), and its dynamic model is also established to verify the performance of the proposed controller. Additionally, the wavelet transform filter (WTF) is adopted as the feedforward filter to extract the learnable part from the error signal which can be used to update the control profile. Thus, the effects from unlearnable dynamics on the controlled system can be attenuated by a PD feedback controller. Finally, using PPALO as the controlled plant, we conduct some trajectory tracking control simulations and experiments to validate the proposed scheme.

    TABLE OF CONTENTS ABSTRACT i TABLE OF CONTENTS iii LIST OF FIGURES v LIST OF TABLES viii Chapter 1 Introduction 1 1.1 Motivations 1 1.2 Literature Survey 1 1.3 Objectives 6 1.4 Organization 7 Chapter 2 The Proposed Controller Design 8 2.1 A Filter-Based Iterative Learning Control Scheme 8 2.2 Stability Analysis 10 2.3 Simulation Verification 17 2.4 Summary 24 Chapter 3 Dynamic Modeling of Pneumatic Power Active Lower-limb Orthosis 25 3.1 Dynamic modeling of the lower-limb orthosis 25 3.2 Actuator torque 29 3.3 The dynamics of a pneumatic actuator 31 3.4 Inverse Kinematics 35 3.5 Summary 36 Chapter 4 Application of the Proposed Method to a PPALO 37 4.1 The Dynamics of PPALO to Independent Joint Space 37 4.2 FILC system of the PPALO 38 4.3 The Stability Analysis for FILC system of the PPALO in 2-D System 40 4.4 Performance Evaluation 45 4.5 Summary 56 Chapter 5 Experimental Studies 57 5.1 An Introduction to the Hardware System of the PPALO 57 5.2 Experimental Setup 60 5.3 The outer-loop controllers design 63 5.4 Inner-loop feedback controller design 69 5.5 Outer-loop controller design 72 5.6 Experimental Results of Position-Tracking 78 5.7 Summary 82 Chapter 6 Summary and Recommendations 83 6.1 Summary 83 6.2 Future Works 84 Appendix A. Re-visit of Wavelet Transform 85 Appendix B. The elements of the dynamic equation, equation (3.1). 87 Appendix C. The coefficients of the transform function (5.8). 89 References 90

    References
    [1] S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operation of robots by learning, ” J. of Robotic Systems, Vol. 1, pp. 123-140, 1984.
    [2] A. D. Barton, P. L. Lewin and D. J. Brown, “Practical Implementation of a Real-Time Iterative Learning Position Controller,” Int. J. Control, Vol. 73, No. 10, pp. 992-999, 2000.
    [3] C. K. Chen and J. Hwang, “Iterative Learning Control for Position Tracking of a Pneumatic Actuated X-Y Table,” Control Engineering Practice, Vol. 13, pp. 1455-1461, 2005.
    [4] N. Amann, D. H. Owen and E. Roger, “Iterative Learning Control Using Optimal Feedback and Feedforward Actions,” Int. J. of Control, Vol. 65, No. 2, pp. 277-293, 1996.
    [5] Z. Bien, and J. X. Xu, Iterative Learning Control, Analysis, Design, Integration and Applications, Kluwer Academic, 1998.
    [6] J. E. Kurek and M. B. Zaremba, “Iterative Learning Control Synthesis Based on 2-D System Theory,” IEEE Trans. on Automatic Control, Vol. 38, No. 1, pp. 121-125, 1993.
    [7] K. L. Moore and J. X. Xu, “Special Issue on Iterative Learning Control, ” Int. J. Control, Vol. 73, No. 10, pp. 819-823, 2000.
    [8] K. S. Tzeng, “ On the design of wavelet-based iterative learning controller and its application,” Ph.D. dissertation, Dept. Pow. Mech. Eng., National Tsing Hua Univ. ,Hsinchu ,Taiwan, 2005.
    [9] K. S. Tzeng and J. S. Chen, “Toward the Iterative Learning Control for Belt-Driven System using Wavelet Transformation,” Journal of Sound and Vibrations, No. 286, pp. 781-798, 2005.
    [10] C. J. Chien, F. S. Lee and J. C. Wang, “Enhanced iterative learning control for a piezoelectric actuator system using wavelet transform filtering,” Journal of Sound and Vibration, Vol. 299, No. 3, pp. 605-620, 2007.
    [11] T. S. Lee, K. S. Tzeng and C. J. Chang, “A repetitive control approach for three-phase shunt active power filters with real-time wavelet transform,” Proceedings of IEEE Power Electronics and Drive Systems Conference, Paper No. 570, 2-5 Nov. 2009, Taipei, Taiwan, ROC.
    [12] Merry, R.J.E., Molengraft, M.J.G. van de & Steinbuch, M. , “ Iterative learning control with wavelet filtering, ” International Journal of Robust and Nonlinear Control, Vol.18, No. 10, pp. 1052-1071, 2008.
    [13] C.M. Chang, T.S. Liu, “ Study on Wavelet Repetitive Control, ” IEE Proceedings - Control Theory And Applications, Vol. 151, No. 3, pp. 303-309, 2004.
    [14] C.M.Chang , T. S.Liu, “Application of Discrete Wavelet Transform to Repetitive Control ” Proceedings of American Control Conference, IEEE, Anchorage, USA, pp.4560-4564, 2002.
    [15] Zhang, B., Wang, D., Ye, Y, “ Wavelet transform-based frequency tuning ILC, ” IEEE Transactions on Systems, Man, and Cybernetics, Part B, Vol. 35, No. 1, pp. 107-114, 2005.
    [16] C. F. Hsu, C. M. Lin and T. T. Lee, “Wavelet adaptive backstepping control for a class of nonlinear systems,” IEEE Trans. Neural Networks, Vol. 17, No. 5, pp. 1175-1183, 2006.
    [17] R. P. Roesser, “A Discrete State-space Model for Linear Image Processing,” IEEE Trans. Automat. Contr. , Vol. 20, No.1 , pp. 1-10, 1975.
    [18] D. Goodman, “Some Stability Properties of Two-Dimensional Linear Shift-Invariant Digital Filters,” IEEE Trans. Circuits Systems, Vol. 24, No. 4 , pp. 201-208, 1977.
    [19] T. S. Huang, “Stability of two-dimensional recursive filters,” IEEE Trans. Audio Electroacoust., vol. AU-20, pp. 158-163, June 1972.
    [20] A. Ahmed, “On the Stability of Two-Dimensional Discrete Systems,” IEEE Trans. Automat. Contr. Vol. 25, No. 3, pp. 551-552, 1980.
    [21] T. W. S. Chow and Y. Fang, “An Iterative Learning Control Method for Continuous-Time Systems Based on 2-D System Theory,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., Vol. 45, No. 4, pp. 683-689, 1998.
    [22] Y. Fang and T. W. S. Chow, “2-D Analysis for Iterative Learning Controller for Discrete-Time Systems with Variable Initial Conditions,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., Vol. 50, No. 5, pp. 722-727, 2003.
    [23] Z. Geng and M. Jamshidi, “Learning Control System Analysis and Design Based on 2-D System Theory,” J. Intell. Robot. Syst., Vol. 3, No. 1 , pp. 17-26, 1990.
    [24] Y. Fang and T. W. S. Chow, “Iterative Learning Control of Linear Discrete-Time Multivariable System,” Automatica, Vol. 34, No. 11 , pp. 1459-1462, 1998.
    [25] J. E. Kurek and M. B. Zaremba , “ Iterative Learning Control Synthesis Based on 2-D System Theory,” IEEE Trans. Autom. Contr., Vol.38, No.1 , pp. 121–125, 1993.
    [26] T. W. S. Chow and X. D. Li, “A Real-Time Learning Control Approach for Nonlinear Continuous-Time Systems Using Recurrent Neural Networks,” IEEE Trans. Ind. Electron., Vol. 47, No. 2 , pp. 478-486 ,2000.
    [27] Z. Geng, R. Carroll and J. Xies, “Two-Dimensional Model and Algorithm Analysis for A Class of Iterative Learning Control System,” Int. J. Contr., Vol. 52, No. 4, pp. 833–862, 1990.
    [28] J. Ghan, R. Steger and H. Kazerooni, “Control and System Identification for the Berkeley Lower Extremity Exoskeleton”, Advanced Robotics, Vol. 20, No. 9, pp. 989-1014, 2006.
    [29] Paul, R., Robot Manipulators: Mathematics, Programming and Control, Cambridge, MIT Press, 1981.
    [30] M. Cotsaftis, J. Robert, M. Rou and C. Vibet, “Applications and prospect of the nonlinear decoupling method,” Computer Methods in Applied Mechanics and Engineering, Vol. 154, pp.163-178, 1998.
    [31] S. Liu and J.E. Bobrow. An Analysis of a Pneumatic Servo System and its Application to a Computer-Controlled Robot. ASME Journal of Dynamic Systems, Measurement and Control 1988;110(3): 228-235.
    [32]Mark Karpenko and Nariman Sepehri. Design and Experimental Evaluation of a Nonlinear Position Controller for a Pneumatic Actuator with Friction. Proceeding of the 2004 American Control Conference Boston, Massachusetts 2004.
    [33]E. Richer, and Y. Hurmuzlu. A High Performance Pneumatic Force Actuator System: Part I-Nonlinear Mathematical Model. ASME Journal of Dynamic Systems, Measurement, and Control 2000 ;122: 416-425.
    [34] F.E. Sanville. A New Method of Specifying the Flow Capacity, of Pneumatic Fluid Power Valves, BHRA 2nd International Fluid Power Symposium, Guildford, England 1971:D3-37~D3-47.
    [35] L. Sciavicco and B. Siciliano, Modeling and control of robot manipulators, New York: McGraw-Hill, 1996.
    [36] W.S. Lu and E. B. Lee, “Stability analysis for two-dimensional systems,” IEEE Trans. Circuits Syst., Vol. 30, No. 7, pp.455-461, 1983.
    [37] T. Kaczorek, Two-dimensional Linear Systems, Berlin, Springer Verlag, 1985.
    [38] X. D. Li, J. K. L. Ho and T. W. S. Chow, “Iterative learning control for linear time-variant discrete systems based on 2-D system theory,” IEE Proc. Control Theory and Applications, Vol. 152, No. 1, pp.413-18, 2005.
    [39] J. X. Xu, S. K. Panda and T. H. Lee, Real-time Iterative Learning Control: Design and Applications-Advances in Industrial Control, Berlin, Springer Verlag, 2008.
    [40] X. D. Li , J. K. L. Ho and T. W. S. Chow, “Iterative learning control for linear time-variant discrete systems based on 2-D system theory,” IEE Proc. Control Theory and Applications, Vol. 152, No. 1, pp. 13-18, 2005.
    [41] H. Diken, “Trajectory control of mass balanced manipulators,” Journal of Mechanism and Machine Theory, Vol. 32, No. 3, pp. 313-322, 1997.
    [42] J.E. Slotine, W. Li, Applied Nonlinear Control, Prentice Hall, 1991.
    [43]J. G. Ziegler and N. B. Nichols ,“Optimum Settings for Automatic Controllers”, Tran. ASME , Vol. 65 , pp. 433-444 , 1942.
    [44] Wavelet Toolbox for Use with MATLAB User’s Guide, The MathWorks, Inc., 1997.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE