簡易檢索 / 詳目顯示

研究生: 林南寰
Lin, Nan-Huang
論文名稱: 以肌電訊號為基礎之動力輔具設計與實作
An EMG-Signal Based Hybrid Assisted Lower-Limb Orthoses
指導教授: 陳建祥
Chen, Jian-Shiang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 57
中文關鍵詞: 肌電訊號輔具
外文關鍵詞: EMG, Electromyogram, prosthesis
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肌電訊號是一種生理現象,伴隨著人體肌肉的收縮會以成正比的趨式呈現在人體皮膚表面。運用此種現象,我們可以用來設計輔具的輸出。除非是肢體完全殘缺者,只要有相對於不出力時能呈現較大的肌電訊號,我們就可以藉此告訴系統該肌肉已經有作動的意圖,而輔具可以開始輸出輔助力矩於特定部位。因而此方向的輔具設計屬於「強化使用者體能型」,而非為肢體殘缺者設計的「義肢型」。
    本文藉由探討肌電訊號的本質,重新設計一個前置處理電路,包含放大與濾波的功能,讓擷取的訊號在解析度與辨識度上都符合使用,接著進一步以實驗建立起大腿股四頭肌的肌電訊號,與人體執行從坐姿到站姿動作的相關性,找出肌電訊號與膝蓋所需支撐力矩的關係,設計一套即時運算方法,將接收到的肌電訊號轉化成輔具的輸出力,並施加在膝蓋上,以期讓使用者在任何膝蓋彎曲角度下都能夠如直立般輕鬆。
    本實驗乃國科會計畫的一部分,扮演的角色為交接與改良的部分。前一代的輔具輸出依據是「測力鞋-角度計模組」的運算結果,這在本文中會經常提及,並將以「原始方法」代稱。本文所提之肌電訊號回饋,既定位為改良的角色,勢必要將使用本方法之前與之後作比較。故介紹先前的方法與為何本文提出的方法可以有效改良「原始方法」的表現,在文中也會經常被提及,最後則以實驗來驗證。


    Abstract
    Electromyogram (EMG) is an phenomenon of physiology. As the
    muscle contracting more, the EMG signal grows shaper. We can use this
    kind of phenomenon designing our prosthesis. Except for those injured
    who totally lost their entire extremity, we can gather data from their EMG.
    The prosthesis system will notice that the user is tend to move his(her)
    body when the shacking amplitude of the use's EMG is much greater than
    that in the static release, static condition. Therefore, the object of
    designing this prosthesis is to enhance human's physical ability instead of
    providing artificial limbs.
    In the beginning of the thesis, we introduce the EMG processing
    circuit, which contain amplifiers and filters. The processed EMG data
    will then be connected to the torque on knee during the sit- to- stand
    motion. While the EMG signal is received by system during the time the
    user bend his knee, the relative assist torque will come out immediately,
    trying to make the user feel as easy as just stand still.
    The objective of this study is trying to improve the original assistant
    force algorithm, which is based on the force-estimate shoe-and-angle
    meter module. This kind of method will be mentioned usually in this
    thesis and kept preparing with the advanced method proposed in this
    thesis.

    圖目錄 V 表目錄 VII 第一章 緒論 1 1-1 背景與研究動機 1 1-2 文獻回顧 2 1-3 本文架構 5 第二章 系統概述 6 2-1肌電訊號之發生與特性 6 2-2 訊號之觀察與假設 9 2-3 訊號分析之方法與說明 12 2-4系統之動態描述 14 2-5 遞迴最小平方法(Recursive Least Squares,RLS) 18 2-6 系統建模與控制 24 2-6 結語 25 第三章 實驗系統架構 26 3-1 實驗架構與流程 26 3-2 實驗設備介紹 26 3-2-1 EMG 感測器(electrode,電極) 26 3-2-2前端訊號放大電路 28 3-2-3角度計 31 3-2-8 閥值判斷電路 32 3-2-9 MATLAB輸出介面:數據採集卡-PCI1711 34 3-3 實驗軟體簡介 35 3-4 結論 37 3-5實驗原理範例 37 第四章 實驗結果 39 4-1 實驗目的 39 4-2 實驗設計 40 4-3 實驗結果 40 4-3-1平台設計製作與測試 41 4-3-2下肢輔具整合實驗結果 46 4-4結果分析 47 4-4-1 RMS分析 47 4-4-2 iEMG分析 48 4-4-3 疲勞輔助改良分析 49 4-5結論 52 第五章 本文貢獻與未來方向 53 5-1 本文貢獻 53 5-2 未來方向 54 參考文獻 55

    [1] M.Asghari Oskoei and H.Hu ” Myoelectric control systems—A survey,” Biomedical Signal Processing and Control 2, pp 275–294, 2007.
    [2] G.-W. Choi, I.-H. Moon, G.-H. Choe and M.-S. Mun,” Development of Surface Myoelectric Sensor for Myoelectric Hand Prosthesis,” Power Electronics Specialists Conference, 2006. PESC '06. 37th IEEE, pp 1-5 , 18-22 June 2006,
    [3] R.S. Ochi and P.R. Cavanagh, “Reliability of surface EMG measurements over 12 hours,” ELSEVIER, Journal of Electromyography and Kinesiology ,17, pp 365–371 ,2007.
    [4] T. W. CALVERT, and A. E. CHAPMAN,” The Relationship Between the Surface EMG and Force Transients in Muscle: Simulation and Experimental Studies,” Journal of Electromyography and Kinesiology 17 , pp 682-689 ,1977.
    [5] J.-U. Chu, I. Moon, S.-K. Kim,and M.-S. Mun, ”Control of Multifunction Myoelectric Hand Using a Real-Time EMG Pattern Recognition,” Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference , pp 3511- 3516, 2005.
    [6] T. F. Jiangang, L. Z. WANG and Y. SUN, “An Image Compressing Algorithm based on PCA/SOFM Hybrid Neural Network,” Industrial Electronics Society, 2003. IECON '03. The 29th Annual Conference of the IEEE, pp 2103-2107, 2003.
    [7] G. M. Foody, “Applications of the self-organising feature map neural network in community data analysis,” Ecological Modelling ,120, pp 97–107, 1999.
    [8] S. Lin J. Si,” Convergence Properties of SOFM Algorithm for Vector Quantization,” 1997 IEEE International Symposium on Circuits and Systems, June 9-12, Hong Kong, pp 509-512, 1997.
    [9] Y. Kun, Z. Hong and Y.-J. Pan,” Human Face Detection Based on SOFM Neural Network,” Information Acquisition, 2006 IEEE International Conference on, pp 1253-1257, 2006.
    [10] J.-U. Chu, , I. Moon, Y.-J. Lee, S.-K. Kim, and M.-S. Mun” A Supervised Feature-Projection-Based Real-Time EMG Pattern Recognition for Multifunction Myoelectric Hand Control,” IEEE/ASME transactions on mechanics, vol. 12, no.3, pp 282-290, 2007.
    [11] A. O. Andradea , S. J. Nasutob and P. Kyberd,” Extraction of motor unit action potentials from electromyographic signals through generative topographic mapping,” Journal of the Franklin Institute, 344, pp 154–179, 2007
    [12] E. J. Scheme, B. Hudgins, and P. A. Parker, “Myoelectric Signal Classification for Phoneme-Based Speech Recognition,” IEEE transactions on biomedical engineering, vol.54, no.4, pp 694-699,2007
    [13] A.-C. Dupont and E. L. Morin, “A Myoelectric Control Evaluation and Trainer System,” IEEE transactions on rehabilitation engineering, vol.2, no.2, pp 100-107, 1994
    [14] K. Terashima , K. Mouri, P. Minyong ,H. Kitagawa and T. Miyoshi “Identification and hybrid impedance control of human skin muscle by multi-fingered robot hand,” Intelligent Robots and Systems, IROS 2007. IEEE/RSJ International Conference, pp 2895-2900, 2007
    [15] J. Romkes and R. Brunner “An electromyographic analysis of obligatory(hemiplegic cerebral palsy) and voluntary (normal)unilateral toe-walking” ELSEVIER,Giat & Posture, 26 , pp 577–586 , 2007.
    [16] http://www.cyberdyne.jp/english/robotsuithal/move.html
    [17] S.Lee and Y.Sankai,” Power assist control for walking aid with HAL-3 base on EMG and impedance adjustment around knee joint,” Intelligent Robots and System, 2002. IEEE/RSJ International Conference, vol. 2, pp.1499 - 1504, 30 Sept.-5 Oct. 2002.
    [18] Y. Hasegawa, Y. Mikami, K. Watanabe and Y. Sankai,” Five-Fingered Assistive Hand with Mechanical Compliance of Human Finger,” IEEE International Conference on Robotics and Automation, pp 718-724, 2008.
    [19] S. N˜omm, E. Petlenkov , J. Vain , J. Belikov , F. Miyawaki and K. Yoshimitsu, ” Recognition of the Surgeon’s Motions During Endoscopic Operation by Statistics Based Algorithm and Neural Networks Based ANARX Models,” Proc. of 17th IFAC World Congress (Seoul, July 2008), pp 14773-14778, 2008.
    [20] T. Nakai, S. Lee,H.Kawamoko and Y.Sankai ” Development of power assistive leg for walking aid using EMG and Linux,” Asia symposium industrial automation and robotics (ASIAR2000) , pp 1295-1310, 2000.
    [21] C. Lee, The relationship between isometric EMG and torque of the quadriceps femoris before and after fatigue, Graduated School of Physical Education Doctoral Dissertation , NTNU, 1998

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE