簡易檢索 / 詳目顯示

研究生: 陳名恩
論文名稱: PEM燃料電池-兩相流模擬分析
A two-phase flow and transport model of a PEM fuel cell
指導教授: 林昭安
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 64
中文關鍵詞: 質子交換膜燃料電池兩相流非等溫電化學毛細管力
外文關鍵詞: proton exchange membrane, fuel cell, two-phase flow, non-isothermal, electrochemical, capillary force
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In the present study, fuel cell performance on the PEMFC cathode is investigated numerically. The modeling framework is assuming that the transport process is diffusion controlled and the convection transport is neglected. Both the single phase and two-phase flows are studied. The single phase, a 1-D, non-isothermal model is developed for various heat generation mechanisms, including irreversible heat due to electrochemical reactions, entropic heat, and Joule heating arising from the electrolyte ionic resistance. The thermal model is further coupled with the electrochemical and mass transport models. The computational domain includes the gas diffusion layer, the catalyst later and the membrane. The predicted results are validated with the experimental data of Liu et al. The effect of various operational parameters on the PEM fuel cell performance is investigated in detail. The results demonstrate the usefulness of this computational model as a design and optimization tool. For the two-phase simulations, the temperature is assumed to remain constant throughout the fuel cell. The reason is that the condensation and evaporation effect of the liquid water is not accounted for. Here, the phase change process is modeled as an equilibrium (i.e. infinitely fast) process, while the transport of liquid water is governed by pressure, surface tension and electro-osmotic drag. Results show that the inclusion of liquid water transport greatly enhances the predictive capability of the model.


    Contents Abstract i Acknowledgment ii Nomenclature iii List of Figures v Chapter 1 Introduction 1.1 Introduction………………………………………………………1 1.2 Literature survey…………………………………………………4 1.3 Motivations & Objectives………………………………………12 Chapter 2 Mathematic Formulations 2.1 Model assumptions .……………………………………………14 2.2 Governing equations ……………………………………………15 2.3 Diffusion controlled transport Equation and Boundary Conditions for single phase flow…………………………………21 2.3.1 Equation for the Oxygen Mass Fraction…………………21 2.3.2 Equation for the Water vapor Mass Fraction……………22 2.3.3 Equation for thermal transports…………………………22 2.3.4 Equation for electrolyte phase potential………………23 2.3.5 Equation for current density………………………………24 2.3.6 Equation for polarization curve…………………………24 2.4 Diffusion controlled transport Equation and Boundary conditions for two phase flow……………………………………24 2.4.1 Equation for the Oxygen Mass Fraction…………………25 2.4.2 Equation for the Water vapor Mass Fraction……………26 2.4.3 Equations for electrolyte phase potential……………26 2.4.4 Equation for current density………………………………27 2.4.5 Equation for polarization curve…………………………27 Chapter 3 Numerical Algorithm 3.1 Discretization of the transport equation…………………28 3.1.1 Spatial discretisation……………………………………28 3.2 TriDiagonal-Matrix Algorithm…………………………………29 3.2.1 Sequence of TDMA……………………………………………30 3.3 Numerical Procedure……………………………………………31 Chapter 4 Results and Discussions 4.1 Single phase flow………………………………………………32 4.1.1 Effect of inlet oxygen mass fraction……………………34 4.1.2 Effect of gas diffuser porosity………………………35 4.1.3 Effect of GDL thickness……………………………………35 4.1.4 Effect of temperature………………………………………35 4.1.5 Effect of catalyst layer porosity………………………36 4.1.6 Effect of proton conductivity……………………………36 4.1.7 Effect of exchange current density………………………37 4.2 Two phase flow……………………………………………………37 4.2.1 Different inlet Relative humidity………………………38 4.2.2 Different gas diffuser porosity and active catalyst surface…………………………………………………………………39 4.2.3 Different Cathode Pressure…………………………………40 Chapter 5 Conclusion 5.1 The conclusion……………………………………………………41 5.2 Future work………………………………………………………42 Reference………………………………………………………………43 Figures…………………………………………………………………47

    Reference:
    [1] T. E. Springer, T. Rockward, T. A. Zawodzinski, S. Gottesfeld, “Model for Polymer Electrolyte Fuel Cell Operation on Reformate Feed,” J. Electrochem. Soc. 148, A11 (2001)
    [2] C. Marr, X. Li, “Composition and performance modeling of catalyst layer in a proton exchange membrane fuel cell,” J. Power Source 77, 17 (1999)
    [3] ZN. Farhat, “Modeling of catalyst layer microstructure refinement and catalyst utilization in a PEM fuel cell,” J. Power Source 138, 68 (2004)
    [4] L. You, HT. Liu, “A parametric study of the cathode catalyst layer of PEM fuel cells using a pseudo-homogeneous model,” Int. J. Hydrogen Energy 26, 991 (2001)
    [5] V. Gurau, HT. Liu, S. Kakac, “Two-Dimensional Model for Proton Exchange Membrane Fuel Cells,” AICHE Journal 44, 2410 (1998)
    [6] S. Um, C. Y. Wang, K. S. Chen, “Computational Fluid Dynamics of Proton Exchange Membrane Fuel Cells,” J. Electrochem Soc147(12), 4485 (2000)
    [7] S. Um, C. Y. Wang, “Three-dimensional analysis of the transport and electrochemical reactions in polymer electrolyte fuel cells,” J. Power Sources 125, 40 (2004)
    [8] H. Ju, H. Meng, C. Y. Wang, “A single phase, non-isothermal model for PEM fuel cells,” Int. J. heat & mass transfer 48, 1303 (2005)
    [9] H. Ju, C. Y. Wang, S. Cleghorn, U. Beuscher “Nonisothermal Modeling of Polymer Electrolyte Fuel Cells . Experimental Validation,” J. Electrochem Soc 152 (8), A1645 (2005)
    [10] J. J. Hwang “Thermal-Electrochemical Modeling of a Proton Exchange Membrane Fuel Cell,” J. Electrochem Soc 153 (2), A216 (2006)
    [11] T. Berning , N. Djilali “Three-dimensional computational analysis of transport phenomena in a PEM fuel cell-a parametric study,” J. Power Sources 124, 440 (2003)
    [12] B. Hum, X. Li, “Two-dimensional analysis of PEM fuel cells,” J. Applied Electrochem 34, 205 (2004)
    [13] L. Wang, A. Husar, T. Zhou, HT. Liu, “A parametric study of PEM fuel cell performances,” Int. J. Hydrogen Energy 28, 1263 (2003)
    [14] HT. Liu, T. Zhou, P. Cheng, “Transport Phenomena Analysis in Proton Exchange Membrane Fuel Cells,” J. Heat Transfer 127, 1363 (2005)
    [15] V. G., F. Barbir, H. Liu, “An Analytical Solution of a Half-Cell Model for PEM Fuel Cells,” J. Electrochem. Soc. 147, 2468 (2000)
    [16] H. S. Chu, C. Yeh, F. Chen, “Effects of porosity change of gas diffuser on performance of proton exchange membrane fuel cell,” J. Power Source 123, 1 (2003)
    [17] R. Roshandel, B. Farhanieh, E. Saievar-Iranizad, “The effects of porosity distribution variation on PEM fuel cell performance,” Renewable Energy 30, 1557 (2005)
    [18] J. H. Nam, M. Kaviany, “Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium,” Int. J. heat & mass transfer 46, 4595 (2003)
    [19] T. E. Springer, T. A. Zawodzinski, S. Gottesfeld, “Polymer Electrolyte Fuel Cell Model,” J. Electrochem. Soc. 138 (8) ,2334 (1991)
    [20] T. V. Nguyen, R. E. White, “A Water and Heat Management Model for Proton-Exchange-Membrane Fuel-Cells,” J. Electrochem. Soc. 140 ,2178
    [21] J. J. Baschuk, X. Li, “Modeling of polymer electrolyte membrane fuel cells with variable degrees of water flooding,” J. Power Source 86, 181 (2000)
    [22] N. Djilali, D. Lu, “Influence of heat transfer on gas and water transport in fuel cells,” Int. J. heat & mass transfer 41, 29 (2002)
    [23] J. S. Yi, T. V. Nguyen, “Multicomponent Transfer in Porous Electrodes of Proton Exchange Membrane Fuel Cells Using the Interdigitated Gas Distributors,” J. Electrochem. Soc. 146, 38 (1999)
    [24] A. Kazim, H. T. Liu, P. Forges, “Modeling of performance of PEM fuel cells with conventional and interdigitated flow fields,” J. Applied Electrochemistry 29, 1409 (1999)
    [25] W. He, J. S. Yi, T. V. Nguyen, “Two-Phase Flow Model of the Cathode of PEM Fuel Cells Using Interdigitated Flow Fields,” AICHE Journal 46, 2053 (2000)
    [26] XL. Liu, YW Tan, WQ. Tao, YL. He, “A hybrid model of cathode of PEM fuel cell using the interdigitated gas distributor,” Int. Hydrogen Energy 31, 379 (2005)
    [27] C. Y. Wang, P. Cheng, “A multiphase mixture model for multiphase, multicomponent transport in capillary porous media-I. Model development,” Int. J. Heat Transfer 39, 3607 (1996)
    [28] C. Y. Wang, P. Cheng, “A multiphase mixture model for multiphase, multicomponent transport in capillary porous media-II. Numerical simulation of the transport of organic compounds in the subsurface,” Int. J. Heat Transfer 39, 3619 (1996)
    [29] Z. H. Wang, C. Y. Wang, K. S. Chen, “Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells,” J. Power Source 94, 40 (2001)
    [30] L. You, H.T. Liu, “A two-phase flow and transport model for the cathode of PEM fuel cells,” I. J. Heat and Mass Transfer 45, 2277 (2002)
    [31] M. Hu, A. Gu, M. Wang, X. Zhu, L. Yu, “Three dimensional, two phase flow mathematical model for PEM fuel cell: Part I. Model development,” Energy Con. and Management 45, 1861 (2004)
    [32] U. Pasaogullari, C. Y. Wang, KS. Chen, “Two-Phase Transport in Polymer Electrolyte Fuel Cells with Bilayer Cathode Gas Diffusion Media,” J. Electrochem. Soc. 152 (8), A1574 (2005)
    [33] U. Pasaogullari, C. Y. Wang, “Two-Phase Modeling and Flooding Prediction of Polymer Electrolyte Fuel Cells,” J. Electrochem. Soc. 152 (2), A380 (2005)
    [34] U. Pasaogullari, C. Y. Wang, “Two-phase transport and the role of micro-porous layer in polymer electrolyte fuel cells,” Electrochimica Acta 49, 4359 (2004)
    [35] U. Pasaogullari, C. Y. Wang, “Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells,” J. Electrochem. Soc. 151 (3), A399 (2004)
    [36] H. Sun, HT. Liu, LJ. Guo, “PEM fuel cell performance and its two-phase mass transport,” J. Power Sources 143, 125 (2005)
    [37] L. You, HT. Liu, “A Two-phase flow and transport model for PEM fuel cells,” J. Power Sources 155, 219 (2006)
    [38] Sandip Mazumder, James Vernon Cole, “Rigorous 3-D Mathematical Modeling of PEM Fuel Cells Model Predictions with Liquid Water Transport,” J. Electrochem. Soc. 150 (11), A1510 (2003)
    [39] R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport Phenomena, Wiley, New York, (1960)
    [40] S. V. Partankar, “Numerical heat transfer and fluid flow,” Hemisphere Publishing Corporation, (1980)
    [41] L. You, Ph.D. Thesis, ”The Two-Phase Flow, Transport Mechanism and Performance Studies for PEM Fuel Cells,” University of Miami (2001)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE