研究生: |
林元堯 YuanYao Lin |
---|---|
論文名稱: |
非局域非線性光學系統 Nonlocal Nonlinear Optical System |
指導教授: |
李瑞光
Ray-Kuang Lee |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 102 |
中文關鍵詞: | 非局域非線性 、非局域孤子 、楕圓渦漩 、對稱性破壞不穩定 、橫向調製 不穩定度 、楕圓不穩定度 |
外文關鍵詞: | nonlocal nonlinear, nonlocal soliton,, elliptical vortex, symmetry- breaking instability, transverse instability, elliptical instability |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要的目的在探討孤立波在非局域非線性介質中的巨觀特性。 這些
性質預期可以在非線性光學系統及原子光學系統中發現並探演重要的角色,改變
該系統特性並增加系統的可控制性. 非局域非線性反應存在熱-光學物質,光折變
晶體,液晶,電漿以及玻色凝態中,已知具有降低非線性維度,穩定非線性孤立波
的作用. 本研究在不失一般性並兼具不同系統之獨特性的前提下深入非局域非
線性介質孤立波的分叉點性質及各項穩定度. 在非局域非線性效應下,向量式耦
合亮-暗光孤子對中的亮光孤子形成所需要的能量會因非局域強度變大而減少,
對於在週期性光晶格下的純量波動,非局域非線性則提供了對能帶的可操控性及
波動在晶格中的可移動性. 此外非局域非線性對所有對稱破壞不穩定度,包含調
製不穩定度, 振盪不穩定度, 橫向調製不穩定度具有明顯的抑制作用. 這樣效應
是來自於非局域反應使介質中的折射率對波動強度的穩態反應緩慢,造成系統中
的微小擾動不容易成長,尤其對於較高頻的微擾,壓制的程度更甚. 因此在這個類
似”低通瀘波器”效果的系統中所有的噪音,微擾在各個方向上(空間及時間上)的
成長受到限制,導致等效非線性維度下降,有助於孤立波在介質中的穩定存在 另
外,在本研究中也建構了一個一般性的數學模型來分析具有圓對稱性的光孤子以
光渦漩. 利用這個模型,本研究發現了一系列新形態的楕圓光孤子,楕圓光渦漩及楕圓光
孤子環.並且研究這些新的光孤子的穩定性及演化特性.
The focus of this work is to explore the macroscopic property of solitary waves in nonlocal nonlinear materials which extend to nonlinear optical systems and atomic optical systems. Nonlocal nonlinearity are known to improve the stability of solitary waves by reducing the nonlinear power. This work reveals insights to bifurcate behavior and instability nature of solitary waves in nonlocal nonlinearity in general aspects and in specific details. Nonlocal nonlinear response reduces
the formation power a guided bright soliton in a dark-bright vector soliton pair, providing controllability over the band structure of scalar waves and enhence the mobility of wave packets in periodic potential; also the symmetry-breaking in-
stabilities are remarkably suppressed ascribable to the fact that nonlocal response exhibits slow steady-state spatial response to the noise spectrum. Such a ”low pass filter” ’effect restricts the noise to grow in all the transverse dimensions and results in the reduction of the effective order of nonlinearity in the system. Furthermore, elliptical solitons in 2D nonlinear Schr\"{o}dinger equations are proposed and studied numerically with a more generalized formulation showing the existence and
symmetry-breaking instabilties of new families of solitons, vortices, and soliton rings with elliptical symmetry, which paves the way for future insvestigation of 2D nonlocal nonlinear system.
[1] Y.S. Kivshar and G.P. Agrawal 2003, Optical Solitons: from Fibers to Photonic Crystals, (San Diego: Academic), and references therein.
[2] J.S. Russel, ”Report on Waves”, 14th meeting of the British Association for the Advancement of Science (BAAS), York, 311-390, Plates XLVII-LVII, (1844) York, September 1844 (London 1845), pp 311-390,
[3] Rayleigh, Lord, On Waves, London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, Ser. 5, April. 1 p257-279 (1876).
[4] D.J. Korteweg and de Vries Gustav, ”On the Change of Form of Long Waves advancing in a Rectangular Canal and on a New Type of Long Stationary Waves,” Philosophical Magazine 39, p422-443 (1876).
[5] C.S. Gardner, J.M. Green, M.D. Kruskal, and R.M. Miura, ”Method for Solving the Korteweg-deVries Equation,” Phys. Rev. Lett. 19, 1095 (1967).
[6] C.S. Gardner, J.M. Green, M.D. Kruskal, and R.M. Miura, ”Korteweg-deVries equation and generalization. VI. Methods for exact solution,” Commun. Pure and Appl. Math. 27, 97 (1974).
[7] N.N. Zabusky and M.D. Kruskal, ”Interaction of ”Solitons” in a Collisionless
Plasma and the Recurrence of Initial States,” Phys rev lett 15, 240 (1965).
[8] Y.R. Shen, ”Principle of Nonlinear Optics,” Wiley, New York (1984).
[9] P.N. Butcher and D.N. Cotter, ”The Elements of Nonlinear Optics,” Cambridge University Press, Cambridge, UK, (1990).
[10] R.W. Byod, ”Nonlinear Optics,” academic Press, San Diego, CA (1992).
[11] G.P. Agrawal, ”Nonlinear Fiber Optics,” 3rd ed., Academic Press, San Diego, CA, (2001).
[12] R.Y. Chiao, E. Garmire, and C.H. Townes, ”Self-Trapping of Optical beams,” Phys. Rev. Lett. 13, 479 (1964).
[13] A. Barthelemy, S. Maneuf, and G. Froehly, ”Propagation soliton et autoconfinement de faisceaux laser par non linearit′ optique de kerr,” Opt. Commun. 55, 201-206 (1985).
[14] S.L. McCall and E.L. Hahn,”Self-Induced-Transparency by Pulsed Coherent Light,” Phys. Rev. Lett. 18, 908 (1967).
[15] A. Hasegawa and F. Tappert,”Transmission of stationary nonlinear optical pulse in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142(1973).
[16] L.F. Mollenauer, R.H. Stolen, and J.P. Gorden,”Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers,” Phys. Rev. Lett. 45, 1095 (1980).
[17] H.A. Haus and W.S. Wong, ”Solitons in optical communications,”Rev. Mod. Phys. 68, 423 (1996).
[18] G.P. Agrawal, ”Application of Nonlinear Fiber Optics,” Academic Press, San Diego, CA, (2001).
[19] A. Hasegawa and F. Tappert, ”Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion,” Appl. Phys. Lett. 23, 171 (1973).
[20] P. Emplit, J.P. Hamaide, F. Reynaud, G. Froehly, and A.
Barthelemy,”Picosecond steps and dark pulses through nonlinear single mode fibers,” Opt. Comm. 62, 374 (1987).
[21] D. Kr‥kel, N.J. Halas, G. Giuiani, and D. Grischkowsky, ”Dark-Pulse Propoagation in Optical Fibers,” Phys. Rev. Lett. 60, 29 (1988).
[22] A.M. Weiner, J.P. Heritage, R.J. Hawkins, R.N. thurston, D.E. Learid, and W.J. Tomlinson, ”Experimental Observation of Dark Soliton in Optical Fibers,”Phys. Rev. Lett. 61, 2445 (1988).
[23] A.M. Weiner, R.N. Thurston, W.J. Tomlinson, J.P. Heritage, D.E. Leaird, and E.M. Kirschner, and R.J. Hawkins, ”Temporal and spectral self-shifts of dark optical solitons,” Opt. Lett. 14, 868 (1989).
[24] C.N. Cohen-Tannoudji, ”Manipulating atoms with photons,” Rev. Mod. Phys. 70, 707-719 (1998).
[25] S. Chu, ”Nobel Lecture: The manipulation of neutral particles,” Rev. Mod. Phys. 70, 685-706 (1998).
[26] M.H. , J.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell ,”Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269, 198 (1995).
[27] K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, and W. Ketterle, ”Bose-Einstein Condensation in a Gas of Sodium Atoms,” Phys. Rev. Lett. 75, 3969 (1995).
[28] K. Burnett, M. Edwards, and C.W. Clark,”The Theory of Bose-Einstein Condensation of Dilute Gas,” Physics Today Dec. 1999, 37-42 (1999).
[29] S. Burger, K. Bongs, S. Dettmer, W. Ertmer, and K. Sengstock, ”Dark Solitons in Bose-Einstein Condensates,” Phys. Rev. Lett. 83, 5198-5201 (1999).
[30] L. Khaykovich, F. Schreck, G. Ferrai, T. Bourdel, J. Cobizolles, L.D. Carr, Y. Castin and C. Salomon, ”Formation of a Matter Wave Soliton,” Science 296, 1290-1293 (2002).
[31] S. Tsuchiya, F. Dalfovo, and L. Pitaevskii, ” Solitons in two-dimensional Bose-Einstein condensates,” Phys. Rev. A 77, 045601 (2008).
[32] A.D. Martin, C.S. Adams, and S.A. Gardiner, ”Bright Matter-Wave Soliton Collisions in a Harmonic Trap: Regular and Chaotic Dynamics,” Phys. Rev. Lett. 98, 020402 (2007).
[33] C. Lee and J. Brand, ”Enhanced quantum reflection of matter-wave solitons,” Europhys. Lett. 73, 321 (2006).
[34] A.W. Synder and D.J. Mitchell,”Accessible Solitons,” Science 276, 1538-1541 (1997).
[35] H.A. Haus,”Waves and Fields in Optoelectronics,” Prentice-Hall, New Jercy, 1984
[36] F.O. Ilday, K. Beckwitt, Y.F. Chen, H. Lim, and F. W. Wise ”Controllable Raman-like nonlinearities from nonstationary, cascaded quadratic processes,” J. Opt. Soc. Am. B 21, 376-383 (2004).
[37] W. Krolik\:{o}wski and O. Bang, ”Solitons in nonlocal nonlinear media: Exact solutions,” Phys. Rev. E 63, 016610 (2000).
[38] C. Rotschild, O. Cohen, O. Manela, M. Segev and T. Carmon, ”Solitons in Nonlinear Media with an Infinite Range of nlocality: First Observation of Coherent Elliptic Solitons and of Vortex-Ring Solitons,” Phys. Rev. Lett. 95, 213904 (2005).
[39] F. Derrien, J.F. Henninot, M. Warenghem, and G. Abbate, ”A thermal (2D+1) spatial optical soliton in a dye doped liquid crystal,” J. Opt. A: Pure Appl. Opt. 2, 332-337 (2000).
[40] M.D.I. Castillo, J.J. S\'{a}nchez-Mondrag\'{o}n, and S. Stepanov, ”Formation of steady-state cylindrical thermal lenses in dark stripes,” Opt. Lett. 21, 1622 (1996).
[41] L.C. Hwang, S.C. Lee, T.C. Wen, ”Nonlinear absorption and refraction in lead glasses: enhanced by the small metal particle dispersions,” Opt. Communi. 228, 373-380 (2003).
[42] P. D. rasmussen and O. Bang, ”Theory of nonlocal soliton interaction in
nematic liquid crystals,” Phys. Rev. E 72, 066611 (2005).
[43] R. Fischer, D.N. Neshev, W. Krolikowski, Y.S. Kivshar, D. Iturbe-Castillo, S. Chavez-Cerda, M.R. Meneghetti, D.P. Caetano, and J.M. Hickman ”Oblique interaction of spatial dark-soliton stripes in nonlocal media,” Opt. Lett. 31, 3010 (2006).
[44] C. Conti, M. Peccianti, and G. Assanto, ”Observation of Optical Spatial Solitons in a Highly Nonlocal Medium,” Phys. Rev. Lett. 92, 113902 (2004).
[45] M. Peccianti, C. Conti, and G. Assanto, ”Optical modulational instability in a nonlocal medium” Phys. Rev. E 68, 025602(R) (2003).
[46] D. Mihalache, D. Mazilu, F. Lederer, B.A. Malomed, Y.V. Kartashov, L.C. Crasovan and L. Torner, ”Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E 73, 025601(R) (2003).
[47] V. Tikhonenko, J. Christou, and B. Luther-Daves, ”Spiraling bright spatial solitons formed by the breakup of an optical vortex in a satruable self-focusing medium,” J. Opt. Soc. Am. B 12, 2046-2052 (1995).
[48] A.I. Yakimenko, Yu.A. Zaliznyak, and Y.S. Kivshar, ” Stable vortex solitons in nonlocal self-focusing nonlinear media,” Phys. Rev. E 71, 065603 (2005).
[49] C. Cambournac, M. Haelterman, A. Adamski, K. Neyts and X. Hutsebaut, ”Single-component higher-order mode solitons in liquid crystals,” Opt. Commun. 233, 211-217 (2004).
[50] J. Shatah and W. Strauss, ”Instability of nonlinear bound states,” Comm. Math. Phys. 100, 173-190 (1985).
[51] W. Krolik\"{o}wski, O. Bang, J.J. Rasmussen and J. Wyller, ”Modulational instability in nonlocal nonlinear Kerr media,” Phys. Rev. E 64, 0166121 (2001).
[52] W. Krolik\"{o}wski, O. Bang, N.I. Nikolov, D. Neshev, J. Wyller,J.J. Rasmussen and D. Edmundson, ”Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media,” J. Opt. B: Quantum Semiclass. Opt. 6, S288-S294 (2004).
[53] L.F. Mollenauer and K. Smith, ”Demonstration of soliton transmission over more than 4000 km in fiber with loss periodically compensated by Raman gain,” Opt. Lett. 13, 675 (1988).
[54] N.J. Doran and D. Wood, ”Soliton processing element for all-optical switching and logic,” J. Opt. Soc. Am B 4, 1843-1846 (1984).
[55] J. Scheuer and M. Orenstein, ”All-optical gates facilitated by soliton inter-actions in a multilayered Kerr medium,” J. Opt. Soc. Am. B 22, 1260-1267 (2005).
[56] M. Peccianti, K. A. Brzdakiewicz, and G. Assanto, ”Nonlocal spatial soliton interactions in nematic liquid crystals,”Opt. Lett. 27, 1460 (2002).
[57] A. Dreischuh, D.N. Neshev, D.E. Petersen, Ole Bang, and W. Krolikowski,”Observation of Attraction between Dark solitons,” Phys. Rev. Lett. 96, 043901 (2006).
[58] A.M. Glass, D. von der Linde, and T.J. Negran, ”The photovoltaic effect and the charge transport in LiNbO3,” Appl. Phys. Lett. 25, 233235 (1974).
[59] H. Okamura, ”Bulk photovoltaic effect and photorefractive grating formation in lithium niobate with picosecond light pulses,” J. Opt. Soc. Am. B 18, 960-965 (2001).
[60] K.-A. Mardal, T.K. Nilssen, and G.A. Staff,”ORDER-OPTIMAL PRECONDITIONERS FOR IMPLICIT RUNGEKUTTA SCHEMES APPLIED TO PARABOLIC PDES,” SIAM J. Sci. Comput. 29, 361-375 (2007).
[61] L.N. Trefethen, ”Spectral Methods in MATLAB,” Oxford University, Oxford England (2000).
[62] J.D. Joannopoulos, R.D. Meade and J.N. Winn, ”Photonic Crystals: Molding the Flow of Light,” Princeton, NJ:Princeton University Press (1995).
[63] C.K. Kao and T.W. Davies, ”Spectroscopic studies of ultra loss optical glasses,” J. Sci. Instrum. 2, 1063 (1968).
[64] F.P. Kapron, D.B. Keck, and R.D. Maurer, ”Radiation losses in glass optical waveguides,” Appl. Phys. Lett. 17, 423 (1970).
[65] E. Sanitzer, ”Cylindrical dielectric waveguide modes,” J. Opt. Soc. Am. 51, 491 (1961).
[66] J. P. King, I. Hardcastle, H.J. Harvey, P.D. Greene, B.J. Shaw, M.G. Jones, D.J. Forbes, and M.C. Wright, Polarization-independent 20 Ghit/s soliton data transmission over 12500 km using amplitude and phase modulation soliton transmission control, Eleclron. Lett. 31, 1090-1091 (1995).
[67] M. Suzuki, I. Morita, N. Edagawa, S. Yamamoto, H. Taga, and S. Akiba, Reduction of Gordon-Haus timing jitter by periodic dispersion compensation in soliton transmission,” Electron. Lett. 31, 2027-2029 (1995).
[68] A. Hasegawa, ”Amplification and reshaping of optical solitons in a glass fiber- IV: Use of stimulated Raman process,” Opt. Lett. 8, 650 (1983).
[69] J.P. Gordon and H.A. Haus, ”Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 11, 665 (1986).
[70] A.F. Evans and J.V. Wright, ”Constraints on the Design of Single-Channel, High-Capacity (¿10 Gb/s) Soliton Systems,” IEEE Phontonics Technol. Lett., 7, 117-119 (1995).
[71] ,Y. Kodama and K. Nozaki, ”Soliton interaction in optical fibers,” Opt.
Letts.12, 1038-1040(1987).
[72] B.A. Malomed, ”Suppression of soliton jitter and interactions by means of
dispersion management,” Opt. Commun. 147, 157-162 (1998).
[73] M. Centurion, M.A. Porter, P.G. Kevrekidis, and D. Psaltis, ”Nonlin-
earity Management in Optics: Experiment, Theory, and Simulation,”
ArXiv:nlin/0604031v2 (2006).
[74] M.N. Islam, ”Ultrafast-all-optical logic gates based on soliton trapping in fibers,” Opt. Lett. 14, 1257 (1989); M.N. Islam, C.E. Soccolich, and D.A.B. Miller, ”Low-energy ultrafast fiber soliton logic gates,” Opt. Lett. 15, 909 (1990);M.N. Islam, C.R. Menyuk, C.-J. Chen, and C.E. Soccolich, ”Chirp mechanisms in soliton-dragging logic gates,” Opt. Lett. 16, 214 (1991);M.N. Islam and C.E. Soccolich, ”Billiard-ball soliton inter-action gates,” Opt. Lett. 16, 14901492 (1991).
[75] S. Blair and K. Wagner, ”Spatial soliton angular deflection logic gates,” Appl. Opt. , 6749-6772 (1999).
[76] Y. Oh, J.W. Haus, and R.L. Fork, ”Soliton-repulsion logic gate,” Opt. Lett. 21, 315317 (1996).
[77] K.H. Ahn, M. Vaziri, B.C. Barnett, G.R. Williams, X.D. Cao, M.N. Islam, B. Malo, K.O. Hill, and D.Q. Chowdhury,”Experimental demonstration of low-latency BER soliton logic gate,” J. ghtwave Technol. 14, 17681775 (1996).
[78] R. Radhakrishman, M. Lakshmanan, and J. Hietarinta, ”Inelastic collision and switching of coupled bright solitons in optical bers,” Phys. Rev. E 56, 22132216 (1997).
[79] S. Lopez-Aguayo, A. S. Desyatnikov, and Yu. S. Kivshar, ”Azimuthons in nonlocal nonlinear media ,” Opt. Express 14, 7903-7908 (2006).
[80] O. Bang, W. Krolikowski, J. Wyller, and J. J. Rasmussen, ”Collapse arrest and soliton stabilization in nonlocal nonlinear media,” Phys. Rev. E 66, 046619 (2002).
[81] Z. Xu, Y. V. Kartashov, and L. Torner, ”Upper threshold for stability of multipole-mode solitons in nonlocal nonlinear media,” Opt. Lett. 30, 3171-3173 (2005).
[82] G. C. Duree, et al., ”Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533-536 (1993).
[83] C. Conti, M. Peccianti, and G. Assanto, ”Route to nonlocality and observation of accessible solitons,” Phys. Rev. Lett. 91, 073901 (2003).
[84] A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, ” Bose-Einstein
condensation of chromium,” Phys. Rev. Lett. 94, 160401 2005.
[85] D. N. Christodoulides and R. I. Joseph, ”Vector solitons in birefringent non-
linear dispersive media,” Opt. Lett. 13, 53-55 (1988).
[86] A. P. Sheppard and Yu. S. Kivshar, ”Polarized dark solitons in isotropic Kerr
media ,” Phys. Rev. E 55, 4773-4782 (1997).
[87] M. Shalaby and A. J. Marthelemy, ”Observation of the self-guided propaga-
tion of a dark and bright spatial soliton pair in a focusing nonlinear medium,”
IEEE J. Quant. Electron. 28, 2736-2741 (1992).
[88] Z. Chen, M. Segev, T. H. Coskun, D. N. Christodoulides, Yu. S. Kivshar, and
V. V. Afanasjev, ”Incoherently coupled dark-bright photorefractive solitons,”
Opt. Lett. 21, 1821-1823 (1996).
[89] Y. V. Kartashov and L. Torner, ”Gray spatial solitons in nonlocal nonlinear
media,” Opt. Lett. 32, 946-948 (2007).
[90] E. A. Ostrovskaya, et. al., ”Stability of Multihump Optical Solitons,” Phys.
Rev. Lett. 83, 296-299 (1998).
[91] Z. Xu, Y. V. Kartashov, and L. Torner, ” Stabilization of vector soliton complexes in nonlocal nonlinear media,” Phys. Rev. E 73, 055601 (2006).
[92] E. A. Ostrovskaya and Yuri S. Kivshar, ”Interactions between solitons and solitonic gluons,” Opt. Lett. 24, 327-329 (1999)
[93] A. Dreischuh et al., ” Observation of attractive between dark solitons,”arXiv:physics/0504003 v2 7 Feb 2006.
[94] C.R. Menyuk,”Stability of solitons in birefringent otical fibers. I. Equal propagation amplitudes,” Opt. Lett. 12, 614 (1987).
[95] N.N. Akhmediev and A. Ankiewicz, ”Solitons:Nonlinear pulses and beams,” 1st ed., Chapman Hall, London (1997).
[96] P.K.A. Wai, C.R. Menyuk, and H.H. Chen, ”Stability of solitons in randomly varying birefringent fibers,” Opt. Lett. 16, 1231 (1991).
[97] S.G. Evangelides Jr. and J.P. Gordon, ”Polarization Multiplexing with Solitons,” J. Lightwave Technol. 10, 28 (1992).
[98] C.R. Menyuk, ”Pulse propagation in an elliptically birefringent Kerr medium,” IEEE J. Quant. Electron. 25, 2674-2682 (1989).
[99] M. Lisak, A. H\"{o}]"{o}k and D. Anderson, ”Symbiotic solitary-wave pairs sustained by cross-phase modulation in optical fibers,” J. Opt. Soc. Am. B 7, 810-814 (1990)
[100] Z. H. Musslimani and J. Yang, ”Transverse instability of strongly coupled dark bright Manakov vector solitons,” Opt. Lett. 26, 1981-1983 (2001).
[101] Yuan-Yao Lin and Ray-Kuang Lee, ”Dark-bright soliton pairs in nonlocal nonlinear media”, Opt. Express 15, 8781-8786 (2007).
[102] B.T. Seaman, L.D. Carr, and M.J. Holland, ” Nonlinear band structure in Bose-Einstein condensates: Nonlinear Schrdinger equation with a Kronig-Penney potential"
[103] O. Morsch and M. Oberthaler, ”Dynamics of Bose-Einstein condensates in optical lattices,” Rev. Mod. Phys. 78, 179 (2006).
[104] B. Wu and Q. Niu, ”Nonlinear Landau-Zener tunneling,”Phys. Rev. A 61, 023402 (2000).
[105] J.C. Bronski, L.D. Carr, B. Deconinck, and J.N. Kutz, ”Bose-Einstein Condensates in Standing Waves: The Cubic Nonlinear Schrdinger Equation with a Periodic Potential,” Phys. Rev. Lett. 86, 1402 (2001).
[106] J.C. Bronski, L.D. Carr, B. Deconinck, J.N. Kutz, and K. Promislow, ”Stability of repulsive Bose-Einstein condensates in a periodic potential,” Phys. Rev. E 63, 036612 (2001).
[107] D. Diakonov, L.M. Hensen, C.J. Pethick, and H. Smith, ”Loop structure of the lowest Bloch band for a Bose-Einstein condensate,” Phys. Rev. A 66, 013604 (2002).
[108] M. Machholm, C.J. Pethick, and H. Smith, ”Band structure, elementary excitations, and stability of a Bose-Einstein condensate in a periodic potential,” Phys. Rev. A 67, 053613 (2003).
[109] O. Zobay and B.M. Garraway, ”Time-dependent tunneling of Bose-Einstein condensates,” Phys. Rev. A 61, 033603 (2000).
[110] K. Berg-Soresen and K. Molmer, ”Bose-Einstein condensates in spatially periodic potentials,” Phys. Rev. A 58, 1480 (1999).
[111] D.-I.Choi and Q. Niu, ”Bose-Einstein Condensates in an Optical Lattice,” Phys. Rev. Lett. 82, 2022 (1999).
[112] B. Wu and Q. Niu, ”Landau and dynamical instabilities of the superflow of Bose-Einstein condensates in optical lattices,” Phys. Rev. A 64, 061603 (2001).
[113] J. Werner, A. Griesmaier, S. Hensler, J. Stuhler, T. Pfau, A. Simoni and E. Tiesinga, ”Observation of Feshbach Resonances in an Ultracold Gas of 5 2Cr,” Phys. Rev. Lett. 94, 183201 (2005).
[114] J. Stuhler, A. Griesmaier, T. Koch, M. Fattori, T. Pfau, S. Giovanazzi, P. Pedri, and L. Santos, ” Observation of Dipole-Dipole Interaction in a Degenerate Quantum Gas,” Phys. Rev. Lett, 95, 150406 (2005).
[115] A. Griesmaier, J. chap3-Duree93Stuhler, and T. Pfau, ”Production of a chromium BoseEinstein condensate ,” Appl. Phys. B 82, 211 (2006).
[116] T.F. Jiang and W.C. Su, ” Ground state of the dipolar Bose-Einstein condensate,” Phys. Rev. A 74, 063602 (2007).
[117] Y.M. Kao and T.F. Jiang, ” Transition temperature of the interacting dipolar Bose gas,” Phys. Rev. A 75, 033607 (2007).
[118] H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Yu. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, ”Bloch Oscillations and Zener Tunneling in Two-Dimensional Photonic Lattices,” Phys. Rev. Lett. 96, 053903 (2006).
[119] E.A. Ostrovskaya and Y.S. Kivshar, ”Matter-Wave Gap Solitons in Atomic Band-Gap Structures,” Phys. Rev. Lett. 90, 160407 (2003).
[120] T. Tsuzuki, ”Nonlinear waves in the Pitaevskii-Gross equation,” J. Low Temp. Phys. 4, 441 (1971).
[121] Z. Xu, Y.V. Kartashov, and L. Torner, ” Soliton Mobility in Nonlocal Optical Lattices,” Phys. Rev. Lett. 95, 113901 (2005).
[122] Y.Y. Lin, I-H. Chen, and R.-K. Lee, ”Breather-like collision of gap solitons in Bragg gap regions within nonlocal nonlinear photonic crystals,” J. Phys. A: Pure Appl. Opt. 10 044017 (2008).
[123] A. Smerzi and A. Trombettoni, ”Nonlinear tight-binding approximation for Bose-Einstein condensates in a lattice,” Phys. Rev. A 68, 023613 (2003).
[124] A. Smerzi and A. Trombettoni, ”Discrete nonlinear dynamics of weakly coupled BoseEinstein condensates,” Chaos 13, 766 (2003).
[125] A.D. Boardman and A.P. Sukhorukov 2001Soliton-driven photonics, (Kluwer Academic Publishers).
[126] C.M. Sterke and J.E. Sipe, ”Gap solitons,” in Progress in Optics, Vol.XXXIII, 203-260, ed. Wolf E (Amsterdam: North-Holland, )1994.
[127] S. Mingaleev and Y.S. Kivshar, Phys. Rev. Lett. 86, 5474 (2001).
[128] N.K. Efremidis, S. Sears, D.N. Christodoulides, J. W. Fleischer and M. Segev, ”Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E 66, 046602 (2002).
[129] R Slusher and B Eggleton 2003, Nonlinear Photonic Crystals, (Berlin: Springer-Verlag, Berlin).
[130] D.E. Pelinovsky, A.A. Sukhorukov, and Y.S. Kivshar, ”Bifurcations and stability of gap solitons in periodic potentials,” Phys. Rev. E 70, 036618.
[131] D.N. Cristodoulides, F. Lederer, and Y. Silberberg, ”Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature (London) 424, 817 (2003).
[132] Y.V. Kartashov, V.A. Vysloukh, and L. Torner, ”Tunable Soliton Self-Bending in Optical Lattices with Nonlocal Nonlinearity,” Phys. Rev. Lett. 93, 153903 (2004).
[133] H. Sakaguchi and B.A. Malomed, ”Dynamics of positive- and negative-mass solitons in optical lattices and inverted traps,” J. Phys. B 37, 1443-1459 (2004).
[134] Y.Y. Lin, R.-K. Lee, and Y.S. Kivshar, ”Suppression of soliton transverse instabilities in nonlocal nonlinear media,” J. OSA. B 25, 576-581 (2008).
[135] Z. Xu, Y.V. Kartashov, and L. Torner, ”Upper threshold for stability of multipole-mode solitons in nonlocal nonlinear media,” Opt. Lett. 30, 3171-3173 (2005).
[136] Y.Y. Lin and R.-K. Lee, ”Dark-bright soliton pairs in nonlocal nonlinear media,” Opt. Express 15, 8781 (2007).
[137] B. J. Dabrowska, E. A. Ostrovskaya, and Yu. S. Kivshar, ”Interaction of matter-wave gap solitons in optical lattices ,” J. Opt. B Quantum Semicl.Opt. 6, 423 (2004).
[138] S. Ronen,D.C.E. Bortolotti, and J.L. Bohn, ” Bogoliubov modes of a dipolar condensate in a cylindrical trap,” Phys. Rev. A 74 013623 (2006)
[139] Z. Pavlovi\'{c} , R. V. Krems , R. C\^{o}t\'{e}, and H.R. Sadeghpour, ” Magnetic Feshbach resonances and Zeeman relaxation in bosonic chromium gas with anisotropic interaction,” Phys. Rev. A 71, 061402R (2005).
[140] B.A. Malomed and R.S. Tasgal, ”Vibration modes of a gap soliton in a nonlinear optical medium,” Phys. Rev. E 49, 5787-5795 (1994).
[141] I.V. Barashenkov, D.E. Pelinovsky, and E.V. Zemlyanaya, ”Vibrations and Oscillatory Instabilities of Gap Solitons,” Phys. Rev. Lett. 80, 5117 (1998).
[142] W.C.K. Mak, B.A. Malomed, and P.L. Chu, ”Formation of a standing-light pulse through collision of gap solitons,” Phys. Rev. E 68, 026609 (2003).
[143] A. Dreischuh , D.N. Neshev,D.E. Petersen, O. Bang, and W. Kr\'{o}likowski,”Observation of Attraction between Dark Solitons,” Phys. Rev. Lett 96 043901 (2006).
[144] Y.S. Kivshar and D.K. Campbell, ”Peierls-Nabarro potential barrier for highly localized nonlinear modes,” Phys. Rev. E 48, 3077-3081 (1993).
[145] Yu.S. Kivshar and D.E. Pelinovsky, ”Self-focusing and transverse instabili-
ties of solitary waves,” Phys. Rep. 331, 117-195 (2000); and references therein.
[146] V.E. Zakharov and A.M. Rubenchik, ”Instability of waveguides and solitons
in nonlinear media,” Sov. Phys. JETP 38, 494-500 (1974).
[147] G. Schmidt, ”Stability of envelope soliton,” Phys. Lett. 34, 274-276 (1975).
[148] S.J. Han, ”Stability of envelope waves,” Phys. Rev. A 20, 2568-2573 (1979).
[149] A. Bondeson, ”Transverse instability of Langmuir soliton,” Phys. Lett. 43, 1117-1119 (1979).
[150] P.A.E.M. Janssen, ”Nonlinear evolution of the transverse instability of plane-envelope solitons,” Phys. Fluids 26, 1279-1287 (1983).
[151] E.A. Kuznetsov and S.K. Turitsyn, ”Instability and collapse of solitons in media with a defocusing nonlinearity,” Sov. Phys. JETP 67, 1583-1588 (1988).
[152] X. Liu, K. Beckwitt, and F. Wise, ”Transverse instability of optical spatiotemporal solitons in quadratic media,” Phys. Lett. 85, 1871-1874 (2000).
[153] A.V. Mamaev, M. Saffman, D.Z. Anderson, and A.A. Zozulya, ”Propagation of light beams in anisotropic nonlinear media: From symmetry breaking to spatial turbulence”, Phys. Rev. A 54, 870-879 (1996).
[154] V. Tikhonenko, J. Christou, B. Luther-Davis, and Yu.S. Kivshar, ”Observation of vortex solitons created by the instability of dark soliton stripes,” Opt. Lett. 21, 1129-1131 (1996).
[155] J.P. Torres, C. Anastassiou, M. Segev, M. Soljacic, and D.N. Christodoulides, ”Transverse instability of incoherent solitons in Kerr media,” Phys. Rev. E 65, 015601 (2001).
[156] K. Motzek, F. Kaiser, W.-H. Chu, M.-F. Shih, and Yu.S. Kivshar, ”Soliton transverse instabilities in anisotropic nonlocal self-focusing media,” Opt. Lett. 29, 280-282 (2004).
[157] Z.H. Musslimani and J. Yang, ”Transverse instability of strongly coupled darkbright Manakov vector solitons,” Opt. Lett. 26, 1981-1983 (2001).
[158] D. Anderson, ”Averaged Lagrangian containning higher derivatives,” J. Phys. A: Math. Gen. 6, (1973).
[159] N. N. Akhmediev ,V. I. Korneev and R. F. Nabiev,”Modulation instability of the lowest nonlinear mode of a cylindrical waveguide,” Phys. Rev. A 46, 430-435 (1992).
[160] A. S. Desyatnikov, Andrey A. Sukhorukov, and Yuri S. Kivshar,” Azimuthons: Spatially Modulated Vortex Solitons,” Phys. Rev. Lett. 95, 203904 (2005).
[161] D.V. Skryabin, and W.J. Firth, ”Dynamics of self-trapped beams with phase dislocation in saturable Kerr and quadratic nonlinear media,” Phys. Rev. E 58, 3916 (1998)
[162] C. Anastassiou, C. Pigier, M. Segev, D. Kip, E.D. Eugenieva and D. N. Christodoulides, ”Self-trapping of bright rings,” Opts. Lett. 26 911 (2001).
[163] M.A. Bandres and J.C. Guti\'{e}rrez-Vega, ”InceGaussian modes of the paraxial wave equation and stable resonators,” J. Opt. Soc. Am. B 21, 873 (2004); U.T. Schwarz, M.A. Bandres and J.C. Guti\'{e}rrez-Vega, ”Observation of Gaussian modes in stable resonators,” Opts. Lett. 29, 1870 (2004).
[164] S. Lopez-Aguayo and J.C. Gutierrez-Vega, ”Elliptically modulated self-trapped singular beams in nonlocal nonlinear media: ellipticons,” Opts. Express 15 18326 (2007).
[165] D. Deng and Q. Guo, ”InceGaussian solitons in strongly nonlocal nonlinear media,” Opts. Lett. 32, 3206 (2007).
[166] P. Zhang, ”Elliptical solitons in nonconventionally biased photorefractive crystals,” Opts. Express 15, 536 (2007)
[167] O. Katz, T. Carmon, T. Schwartz, M. Segev, and D. N. Christodoulides,"Observation of elliptic incoherent spatial solitons", Opts. Lett. 29, 1248 (2004).
[168] D. Buccoliero, A.S. Desyatnikov, W. Krolikowski, and Y.S. Kivshar, ”Laguerre and Hermite Soliton Clusters in Nonlocal Nonlinear Media,” Phys.Rev. Lett. 98, 053901 (2007).
[169] B.A. Malomed, ”Variational methods in nonlinear fiber optics and related fields,” in Progress in Optics, Vol. 43, pp. 71. edited by E. Wolf (North-Holland, Amsterdam, 2002).
[170] A. Lifschitz, ”Exact description of the spectrum of elliptical vortices in hydrodynamics and magnetohydrodynamics,” Phys. Fluids 7, 1626 (1995).