研究生: |
林哲平 |
---|---|
論文名稱: |
以聚噁唑啉及其共聚物製備奈米基因載體之研究及其在癌症治療上之應用 Gene Delivery System and Gene Therapy based on Poly(2-ethyl-2-oxazoline) and it's Copolymers |
指導教授: | 薛敬和 |
口試委員: |
劉英麟
駱俊良 蔡協致 黃郁棻 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2011 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 151 |
中文關鍵詞: | 聚噁唑啉 、基因治療 、酸鹼應答型高分子 、微胞 、基因傳輸載體 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
poly(2-ethyl-2-oxazoline)(PEOz)為一水溶性高分子,除了高親水性外,亦具備了酸鹼應答性及生物相容性,近幾年亦被FDA認可通過做為生物黏著劑。此外,由於PEOz易於製備團聯共聚物(copolymer)之特性,更使PEOz的應用與設計無限寬廣。本研究之主要構想是以親水性高分子PEOz為主體,製備功能性之奈米基因載體,以期應用於基因治療。本研究將分三部份分別陳述。
第一部份、酸鹼應答型高分子微胞做為細胞內基因傳輸載體及在基因傳輸上的應用。本部分研究目的在設計一具酸鹼應答性及生物相容性之陽離子型高分子團聯共聚物poly(oxazoline/ethylenimine)-b -poly(2-ethyl-2-oxazoline)-NH2, P(EOz/EI)-b-PEOz-NH2),此團聯共聚物之P(EOz/EI) 鏈段為陽離子高分子,可與DNA經靜電作用結合成聚複合體(polyplex),而控制P(EOz/EI)水解程度及調整適當的電荷強度,則可降低細胞毒性及提高基因傳輸效率。此外殼PEOz具有安定聚複合體結構、提高親水性、低毒性及避免受免疫系統辨識之優點,而PEOz所特有的酸鹼應答性更可在基因聚複合體進入細胞後,達到結構破壞進而幫助基因脫附的效果。此外本研究利用巨起始劑之方法所形成之團連共聚物末端具有胺基(amino group),可進一步與各種功能型官能基產生鍵結,提升其應用價值。實驗結果顯示,雙團聯共聚物P(EOz/EI)-b-PEOz相較於Branched-Poly(ethylenimine) (B-PEI)具有低細胞毒性,本身具有酸鹼應答性,轉染效率也與市售載體相當,藉由設計始末端帶有NH2官能基更讓此載體之發展性大幅提昇。因此本研究所合成之雙團聯共聚物為優良的陽離子高分子基因載體,故具有應用在基因治療的潛力。
第二部份、三聚離子型基因載體之研發及其在基因傳遞上之應用。本部分研究目的在設計一具備複合型結構之高分子基因載體,利用具生物相容性之PEOz與於中性環境下帶負電性之PMAA (polymethacrylic acid)合成雙團聯共聚物 (poly(2-ethyl-2-oxazoline)- b-poly(methacrylic acid), PEOz-b-PMAA ),再進一步藉由電性吸引方式與表面帶正電性之B-PEI/DNA聚複合體前驅物結合,形成具有複合結構的非病毒型基因載體。親水性高分子PEOz裸露於載體外殼,以提高載體於血液循環中之安定性,避免被巨噬細胞所吞噬,降低載體本身之細胞毒性,並利用內層B-PEI之高轉染效率來達到改善基因傳輸之效率。整體而言,利用PEOz-PMAA與B-PEI/DNA所結合之複合結構微胞可大幅提升B-PEI/DNA聚複合體之生物相容性,且表現出相當程度的轉染與細胞吞噬效率。
第三部份、基因傳輸之影像分析及癌症治療之療效研究,本部分研究首先選取前兩部分結果較佳之高分子與微胞組成,分別針對微胞粒徑大小、界面電位、高分子材料毒性、微胞毒性及轉染效果等做比較,探討兩者之間差異,進而選擇較適當的基因載體,進行基因傳輸影像分析及癌症治療之療效研究。分析結果顯示,第一部份之高分子基因載體P(EOz/EI)-b-PEOz具有較佳之表現。以P(EOz/EI)-b-PEOz進行後續的研究,包覆抗血管增生因子human Endo::Angio(hEA),藉由觀察腫瘤大小及活體影像來探討基因治療之效果。實驗結果顯示本研究所設計之P(EOz/EI)-b-PEOz高分子基因載體,包覆hEA後能有效的抑制腫瘤成長,在注射後短時間內(3小時)能有效的聚集在癌細胞處,並於24小時後藉由代謝系統漸漸累積在膀胱處,顯示此基因載體在基因治療上應當是相當有發展性。
The research synthesized the non-viral gene vectors based on poly(2-ethyl-2-oxazo-line) and it’s copolymer.
Part 1: This study synthesized the non-viral and pH-sensitive gene carrier, poly((2-ethyl-2-oxazoline)-co-ethylenimine)-block-poly(2- ethyl-2-oxazoline) (P(EOz/EI)-b-PEOz). The gene carrier contains both cationic poly((2-ethyl-2-oxazoline)-co-ethylenimine) (P(EOz/EI)) segments and charge-neutral poly(2-ethyl-2-oxazoline) (PEOz) segments. In this study, PEOz was used as biocompatibility shell and as the core source. A technique using methanesulfonyl poly((2-ethyl-2-oxazoline)-co-ethylenimine, (P(EOz/EI)-OMs) as a macroinitiator to modify the outer shell PEOz segment provided an amino group at the chain terminus. P(EOz/EI)-b-PEOz were coordinated with plasmid DNA, and the resulting complexes were characterized by gel permeation chromatography and 1H NMR spectra. The P(EOz/EI)-b-PEOz polyplexes showed suitable mean particle size, low cytotoxicity, and acceptable transfection because of shielding of PEI by PEOz outer shell. TEM morphology showed that the stable core-shell structure of ternary polyplexes at pH 7.4 collapsed and released plasmid at pH 5. Observations of cell uptake of the B-PEI/DNA polyplex and P(EOz/EI)-b-PEOz/DNA polyplexes by CLSM revealed that P(EOz/EI)-b-PEOz polyplexes started to accumulate after 6 h incubation and accumulated significantly after 12 h. The results indicated that the hydrophilic, charge-neutral PEOz shell stabilized polyplex formation, and enhanced polyplex cell viability. Polyplex transfection efficiencies were as high as those of commercially available transfection reagents. Our results suggest that this novel gene carrier, based on the diblock copolymer P(EOz/EI)-b-PEOz, has potential for in non-viral gene therapy applications.
Part 2: This investigation demonstrates new ternary gene delivery systems, based on the pH-responsive diblock copolymer poly(2-ethyl-oxazoline)-block-poly(methacrylic acid) (PEOz-b-PMAA), and the branched-poly (ethylenimine) (B-PEI). The plasmid DNA is complexed with B-PEI and further with PEOz-b-PMAA to obtain ternary polyplexes (DNA/B-PEI/PEOz-b-PMAA). PMAA was partially dissociated at neutral pH with a negative charge, to attach to the positively charged surface of the B-PEI/DNA polyplex. The ternary polyplexes also desorb and return to the original pre-poly complex to help gene release after cell uptake due to PMMA becomes neutral charge under an acid environment in endosome. The ternary polyplexes show suitable mean particle size, low cytotoxicity, and acceptable transfection at pH 7.4 because of shielding of B-PEI by PEOz-b-PMAA. A transmission electron microscopy morphological examination shows that the stable core-shell structure of ternary polyplexes at pH 7.4 collapsed and released plasmid at pH 5. Observations of the cell uptake of the B-PEI/DNA polyplex and ternary polyplexes by confocal laser-scanning microscope revealed that ternary polyplexes started to accumulate after 3 h of incubation and accumulated significantly after 6 h. In conclusion, the ternary polyplex improves the cytotoxicity of the single B-PEI/DNA polyplex, and presents a pH-responsive behavior to enhance gene escape from the polyplex. The ternary polyplex constitutes a useful approach for gene carrier design.
Part 3: The primary objective of this study is to explore the feasibility of inhibiting tumor growth via the delivery of endostatin-angiostatin (hEA) fusion gene by above non-viral gene carrer. We first compared above two gene carriers in particles size, zeta potential, cell toxicity and gene transfection efficiency. The results indicated that the gene carrier P(EOz/EI)-b-PEOz from first part had better quality for gene delievery, so we chose P(EOz/EI)-b-PEOz for further research. The results indicated that gene carrier P(EOz/EI)-b-PEOz with hEA led to a higher degree of tumor growth inhibition, and can be easily accumulated in tumor and metabolized. In conclusion, the P(EOz/EI)-b-PEOz constitutes a useful approach for gene carrier design.
六、 參考文獻
1. Anderson W. F., Nature, 392, 25-30, 1998
2. Eglitis M. A. and Anderson W. F., Biotechniques., 6, 608-14, 1988
3. Graham F. L. and Prevec L., Mol. Biotechnol., 3, 207-20, 1995
4. Yang Y. and Wilson J. M., J. Immunol., 155, 2564-70, 1995
5. Kotin R. M., Hum. Gene Ther., 5, 793-801, 1994
6. Hermonat P. L. and Muzyczka N., Proc. Natl. Acad. Sci. U. S. A., 81, 6466-70, 1984
7. Felgner P. L., Barenholz Y., Behr J. P., Cheng S. H., Cullis P., Huang L., Jessee J. A., Seymour L., Szoka F., Thierry A. R., Wagner E. and Wu G., Hum. Gene Ther., 8, 511-2, 1997.
8. Bangham A. D., Standish M. M. and Watkins J. C., J. Mol. Biol., 13, 238-52, 1965
9. Loke S. L, Stein C. A., Zang X., Avigan M. and Cohen J., Curr. Top. Microbiol. Immunol., 141, 282-9, 1988
10. Litzinger D. C. and Huang L., Biochim Biophys Acta., 1113, 201-27, 1992
11. Chu C. J., Dijkstra J., Lai M. Z., Hong K. and Szoka F. C., Pharm. Res., 7, 824-834, 1990
12. Felgner P. L., Gadek T. R., Holm M., Roman R., Chan H. W., Wenz M., Northrop J. P., Ringold G. M. and Danielsen M., Proc. Natl. Acad. Sci. U. S. A., 84, 7413-7, 1987
13. Zelphati O. and Szoka F. C., J. Control. Release, 41, 99–119, 1996
14. Behr J. P., Bioconjugate Chem., 5, 382-9, 1994
15. Filion, M. C. and Phillips, N. C., Int. J. Pharm., 162, 159–170, 1998
16. Yamaoka T., Advance in Biomaterials and Drug Delivery Systems, Princeton, Taipei, Taiwan, 397, 2002
17. Gregory L. G., Harbottle R. P., Lawrence L., Knapton H. J., Themis M. and Coutelle C., Mol. Ther., 7, 19-26, 2003
18. Yamaoka T., Hamada N., Iwata H., Murakami A. and Kimura Y., Chem. Lett., 11, 1171-2, 1998
19. Han S., Mahato R. I., Sung Y. K. and Kim S. W., Mol. Ther., 2, 302-17, 2000
20. Sato T., Ishii T. and Okahata Y., Biomaterials, 22, 2075-80, 2001
21. MacLaughlin F. C., Mumper R. J., Wang J., Tagliaferri J. M., Gill I., Hinchcliffe M. and Rolland A. P., J. Control. Release, 56, 259-72, 1998
22. Zauner W, Ogris M. and Wagner E., Adv. Drug Deliv. Rev., 30, 97-113, 1998
23. Erbacher P., Roche A. C., Monsigny M. and Midoux P., Exp. Cell Res., 225, 186-94, 1996
24. Tsutomu K., Shizuo N., Taneo M. and Kenichi F., Journal of Polymer Science Part B: Polymer Letters, 4, 441-5, 1966
25. Kobayashi S., Kaku M. and Saegusa T., Macromolecules, 21, 334-8, 1988
26. Gangfeng C. and Morton H. L., J. Polym. Sci. Pol. Chem., 30, 671-7, 1992
27. Kwon, I. C., Bae Y. H. and Kim S. W., Nature, 354, 291, 1991
28. Godbey W. T., Wu K. K. and Mikos A. G., J. Control. Release, 60, 149-60, 1999
29. Dunlap D. D., Maggi A., Soria M. R. and Monaco L., Nucleic Acids Res., 25, 3095-101, 1997
30. Von H. A., Petersen H., Li Y. and Kissel T., J. Control. Release, 69, 309-22, 2000
31. Behr J. P., Chimia, 51, 34-6, 1997
32. Otmane B., Frank L., Marla A. Z. and Mojgan D. M., Proc. Natl. Acad. Sci. U. S. A., 92, 7297-301, 1995
33. Pollard H., Remy J. S., Loussouarn G., Demolombe S., Behr J. P. and Escande D., J. Biol. Chem., 273, 7507-11, 1998
34. Godbey W. T., Wu K. K. and Mikos A. G., J. Biomed. Mater. Res. Part A, 45, 268-75, 1999
35. Fischer D., Bieber T., Li Y., Elsasser H. P. and Kissel T., Pharm. Res., 16,1273-9, 1999
36. Abdallah B., Hassan A., Benoist C., Goula D., Behr J. P. and Demeneix B. A., Hum. Gene Ther., 7, 1947-54, 1996
37. Wightman L., Kircheis R., Rossler V., Carotta S., Ruzicka R., Kursa M. and Wagner E., J. Gene. Med., 3, 362-72, 2001
38. Jeong J. H., Song S. H., Lim D. W., Lee H. and Park T. G., J. Control. Release, 73, 391-9, 2001
39. Goula D., Remy J. S., Erbacher P., Wasowicz M., Levi G., Abdallah B. and Demeneix B. A., Gene Ther., 5, 712-17, 1998
40. Ogris M., Brunner S., Schuller S., Kircheis R. and Wagner E., Gene Ther., 6, 595-605, 1999
41. Kakizawa Y. and Kataoka K., Adv. Drug Deliv. Rev., 54, 203-22, 2002
42. Katayose S. and Kataoka K., Bioconjugate Chem., 8, 702-7, 1997
43. Choi Y. H., Liu F., Kim J. S., Choi Y. K., Park J. S. and Kim S.W., J. Control. Release, 54, 39-48, 1998
44. Choi J. H., Choi J. S., Suh H. and Park J. S., Bull. Korean Chem. Soc., 22, 46-52, 2001
45. Petersen H., Fechner P. M., Martin A. L., Kunath K., Stolnik S., Roberts C. J., Fischer D., Davies M. C. and Kissel T., Bioconjugate Chem., 13, 845-54, 2002
46. Kichler A., Chillon M., Leborgne C., Danos O. and Frisch B. I., J. Control. Release, 81, 379-88, 2002
47. Daniel W. P. David P. and Robert L., Biotechnol. Bioeng., 67, 217, 2000
48. Marie C. J. and Jean C. L., Eur. J. Pharm. Biopharm., 48, 101-111, 1999
49. Philippova O. E., Hourdet D., Audebert R. and Khokhlov A. R., Macromolecules, 32,6646-51, 1999
50. Pinkrah V. T., Snowden M. J., Mitchell J. C. and Seidal J., Langmuir, 19, 585-90, 2003
51. Kinam P., Adv. Drug Deliv. Rev., 53, 321, 2001
52. Liu S. and Armes S. P., Langmuir, 19, 4332, 2003
53. Steven P. A., Macromolecules, 34, 1503, 2001
54. Kataoka K., Bioconjugate Chem., 17, 677-88, 2006
55. Igor L. R., Gleb B. S. and Helmuth M., Colloid Surf. A-Physicochem. Eng. Asp., 202, 127-33, 2002
56. Atsushi H. and Kataoka K., Science, 283, 65, 1999
57. Pavel M., Jana H., Karel P., Zdeněk T., Milena Š., Martin H. and Stephen E. W., J. Phys. Chem. B, 107, 8232-40, 2003
58. Wangqing Z., Linqi S., Yingli A., Lichao G. and Binglin H., J. Phys. Chem. B, 108, 200-4, 2004
59. Evgeniy A. L., Pavel S. C., Tatiana K. B., Adi E., Victor A. K. and Alexander V. K., J. Phys. Chem. B, 108, 12352-9, 2004
60. Miroslav Š., Klára P., Eva T. and Karel P., Langmuir, 17, 4240-4, 2001
61. Klára P., Miroslav Š. and Karel P., Langmuir, 17, 4245-50, 2001
62. Eun S. L., Kun N. and You H. B., J. Control. Release, 91, 103–13, 2003
63. Ping C., Chengqing W., Jing Y., Zuowei X. and Chi W., Macromolecules, 37, 3438-43, 2004
64. Hammad M. A. and Muller B. W., Eur. J. Pharm. Sci., 7 49-55, 1998
65. Aparna K., Israel R. and Hayat Ö., Pharm. Res., 20, 297-302, 2003
66. Choi Y. K. and Kim, J. S., Biodegradable mixed polymeric micelles for gene delivery, 1999
67. Vladimir S. T., Aaron L., James E. H., Vladimir G. B. and Jon A., Nucleic Acids Res., 27, 3090-5, 1999
68. Kefeng R., Jian J. and Jiacong S., Macromol. Rapid Commun., 26, 1633-8, 2005
69. Yoshiyuki K., J. Biomater. Sci.-Polym. Ed., 14, 515-31, 2003
70. Thomas J. L. and Tirrell D. A., J. Control. Release, 67, 203, 2000
71. Vijay A. S., Kun N. and You H. B., Biomacromolecules, 7, 64-70, 2006
72. Engin K., Leeper D. B., Cater J. R., Thistlethwaite A. J., Tupchong L. and McFarlane J. D., Int. J. Hyperthermia, 11, 211-6. 1995
73. Martin A. L., University of Nottingham
74. Manning G. S., Q. Rev. Biophys., 11 179-246, 1978
75. Kenneth A. M., Dynamics and Biological Implications, 137, 1987
76. Roxana G., Biochemistry, 38, 14069, 1999
77. Bloomfield V. A., Biopolymers, 44, 269, 1997
78. Nicholas V. H., Proc. Natl. Acad. Sci. U. S. A., 16, 9296, 2003
79. Toma R., J. Control. Release, 81, 201-17, 2002
80. Yamaoka T., Research Signpost, Kerala, India, 289, 2002
81. Bally M. B., Adv. Drug Deliv. Rev., 38, 291-315 , 1999
82. Wolfert M. A., Dash P. R., Nazarova O., Oupicky D., Seymour L. W., Smart S., Strohalm J. and Ulbrich K., Bioconjugate Chem., 10, 993, 1999
83. Tang M. X. and Szoka F. C., Gene Ther., 4, 823, 1997
84. Clark P. R. and Hersh E.M., Mol. Ther., 1, 158, 1999
85. Yamaoka T., Iwata H., Hamada N., Ide H. and Kimura Y., Nucleic Acids Symp. Series, 31, 229, 1994
86. Midoux P., Legrand A., Raimond J. and Mayer R., Nucleic Acids Res., 21, 871, 1993
87. Takai T. and Ohmori H., Biochim Biophys Acta., 1048, 105, 1991
88. Ellens H., Bentz J. and Szoka F. C., Biochemistry, 23, 1532, 1984
89. Boussif O., Lezoualch H., Zanta M. A., Mergny M. D., Scherman D., Demeneix B. and Behr J. P., Proc. Natl. Acad. Sci. U. S. A., 92, 7297, 1995
90. Mortimer I., Tam P., MacLachlan I., Graham R. W., Saravolac E. G. and Joshi P. B., Gene Ther., 6, 403, 1999
91. Zauner W., Brunner S., Buschle M., Ogris M. and Wagner E., Biochim Biophys Acta., 1428, 57, 1999
92. Godbey W. T., Wu K. K. and Mikos A. G., Proc. Natl. Acad. Sci. U. S. A., 96, 5177, 1999
93. Katayose S. and Kataoka K., J. Pharm. Sci., 87, 160, 1998
94. Kabanov A. V. and Kabanov V. A., Bioconjugate Chem., 6, 7, 1995
95. Erbacher P., Roche A. C., Monsigny M. and Midoux P., Exp. Cell Res., 225, 186, 1996
96. 張玉瓏、徐乃芝、許素菁, 生物技術, 新文京.
97. Folkman J. and Shing Y., J. Biol. Chem., 267, 10931-4, 1992
98. Pettet G., Chaplain M. A., McElwain D. L. and Byrne H. M., Proc. R. Soc. B-Biol. Sci., 263, 1487-93, 1996
99. Breier G., Placenta 21 Suppl. A, S11-15, 2000
100. Jaffe R. B., Semin. Perinatol., 24, 79-81, 2000
101. Hanahan D., Christofori G., Naik P. and Arbeit J., Eur. J. Cancer, 32, 2386-93, 1996
102. Folkman J., N. Engl. J. Med., 285, 1182-6, 1971
103. Pluda J. M. and Parkinson D. R., Cancer, 78, 680-7, 1996
104. Folkman J. and Shing Y., J. Biol. Chem., 267, 10931-4, 1992
105. Zetter B. R., Annu. Rev. Med., 49, 407-24, 1998
106. Stamenkovic I., Semin. Cancer Biol., 10, 415-33, 2000
107. Curran S. and Murray G. I., Eur. J. Cancer, 36, 1621-30, 2000
108. Jackson C. J. and Nguyen M., Int. J. Biochem. Cell Biol., 29, 1167-77, 1997
109. Dumas V., Kanitakis J., Charvat S., Euvrard S., Faure M. and Claudy A., Anticancer Res., 19, 2929-38, 1999
110. Duffy M. J., Maguire T. M., Hill A., McDermott E. and O'Higgins N., Breast Cancer Res., 2, 252-7, 2000
111. Folkman J., Klagsbrun M., Science, 235, 442-7, 1987
112. Taylor S. and Folkman J., Nature, 297: 307-312, 1982
113. Ingber D., Proc. Natl. Acad. Sci. U. S. A., 87, 3579-83, 1990
114. Good D. J., Polverini P. J. and Rastinejad F., Proc. Natl. Acad. Sci. U. S. A., 87, 6624-8, 1990
115. Sheibani N. and Frazier W. A., Proc. Natl. Acad. Sci. U. S. A., 92, 6788-92, 1995
116. Weinstat-Saslow D. L., Zabrenetzky V. S., VanHoutte K., Frazier W. A. and Oberts D. D., Cancer Res., 54, 6504-11, 1994
117. Campbell S.C., Volpert O.V. and Ivanovich M., Cancer Res., 58, 1298-304, 1998
118. Hori A., Sasada R., Matsutani E., Naito K., Sakura Y., Fujita T. and Kozai Y., Cancer Res., 51, 6180-814, 1991
119. Kim K. J., Li B., Winer J., Armanini M., Gillett N., Phillips H. S. and Ferrara N., Nature, 362, 841-4, 1993
120. Watson S. A., Morris T. M., Robinson G., Crimmin M. J., Brown P. D. and Hardcastle J. D., Cancer Res., 55, 3629-33, 1995
121. Boehm T., Folkman J., Browder T. and O'Reilly M.S., Nature, 390, 404-407, 1997
122. O’Reilly M. S., Holmgren L., Shing Y., Chen C., Rosenthal R. A., Moses M., Lane W. S., Cao Y., Sage E. H. and Folkman J., Cell, 79, 315-28, 1994
123. Brock C. S. and Lee S. M., Eur. Resp. J., 19, 557-70, 2002
124. Folkman J., Exp. Cell Res., 312, 594-607, 2006
125. Ponnazhagan S., Mahendra G., Kumar S., Shaw D. R., Stockard C. R., Grizzle W. E. and Meleth S., Cancer Res., 64, 1781-7, 2004
126. Raikwar S. P., Temm C. J., Raikwar N. S., Kao C., Molitoris B. A. and Gardner T. A., Mol. Ther., 12, 1091-100, 2005
127. Li X., Raikwar S. P., Liu Y. H., Lee S. J., Zhang Y. P., Zhang S., Cheng L., Lee S. D., Juliar B. E. and Gardner T. A., Mol. Cancer Ther., 5, 676-84, 2006
128. Friedmann T. and Roblin R., Science, 175, 949, 1972
129. Anderson W. F., Nature, 392, 25, 1998
130. Verma I. M. and Somia N., Nature, 389, 239, 1997
131. Blaese R. M., Culver K. W., Miller A. D., Carter C. S., Chiang Y. and Tolstoshev P., Science, 270, 475, 1995
132. Duncan J. E., Whitsett J. A. and Horowitz A. D., Hum. Gene Ther., 8, 431-8, 1997
133. Ernst N., Ulrichsko¨tter S., Schmalix W. A. and Rosenacker J., J. Gene. Med., 1, 331-40, 1999
134. Hsiue G. H., Chiang H. Z. and Wang C. H., Bioconjugate Chem., 17, 781-6, 2006
135. http://www.zmbh.uni-heidelberg.de/bujard/reporter/pUHC13-3.html
136. http://www.itsbio.co.kr/main/goods_view.php?category2=58&no=122
137. http://ocw.mit.edu/courses/biological-engineering/20-109-laboratory-fundamentals-in-biological-engineering-fall-2007/labs/transfection/
138. Bae Y. H. and Kim S. W., Nature, 354, 2913, 1991
139. Marjo M., Pharmaceutical Sci., 2007
140. Huxley H. E. and ZUBAY G., J. Biophy. Biochem. Cytol., 11, 1961
141. Brock C. S. and Lee S. M., Eur. Resp. J., 19, 557-70, 2002
142. Folkman J., Exp. Cell Res., 312,594-607, 2006
143. Sun X., Qiao H., Jiang H., Zhi X., Liu F., Wang J., Liu M., Dong D., Kanwar J. R. and Xu R., Cancer Gene Ther., 12, 35-45, 2005