研究生: |
張晉偉 Chin-Wei Chang |
---|---|
論文名稱: |
以氮化矽為儲存單元的奈米線複晶矽薄膜電晶體非揮發性記憶體的研究 Study of Nanowire Poly-Si Thin Film Transistors Nonvolatile Memory with Nitride trapping layer |
指導教授: |
吳永俊
Yung-Chun Wu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2008 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 45 |
中文關鍵詞: | 奈米線複晶矽薄膜電晶體 、非揮發性記憶體 |
外文關鍵詞: | Nanowire Poly-Si Thin Film Transistors, Nonvolatile Memory |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
低溫複晶矽薄膜電晶體已成為實現高畫質可攜式平面顯示器的關鍵技術。其另一項具革命的技術發展,為系統面板(System on Panel: SOP)的實現;既是將所有的周邊電路,關鍵元件,驅動電路等,全部整合於玻璃基板上。電晶體尺寸的微縮可以加快電路運作的速度,提高積體電路元件的密度,增加晶片的功能及設計彈性。因此依據金氧半電晶體微縮法則(Scaling rule),將複晶矽薄膜電晶體尺寸微縮化,會得到相同的效能提升,如此方可將周邊電路,關鍵元件,驅動電路等,全部整合於玻璃基板上,來實現系統面板的目標。然而複晶矽薄膜電晶體仍具有功率大量消耗的問題,故解決功率大量消耗的課題是值得探討的。由於非揮發性記憶體可在低功率消耗的狀態下操作,為了達到系統面板的需求,本論文成功的結合複晶矽薄膜電晶體的新穎製程和非揮發性記憶體的特性,製作出高效能的非揮發性薄膜電晶體。研究結果發現,具三面閘極與奈米線以氮化矽為儲存單元的矽-氧化矽-氮化矽-氧化矽-複晶矽 (SONOS) 非揮發性複晶矽薄膜記憶體用有很好的可靠度,如較
好的資料保存能力(Retention)和較好的重複讀寫的忍受度(Endurance),並且可達到二位元(Two-bit)操作。對於系統面板的整合,與三維立體堆疊式元件上,極具產業運用價值。
在論文的第一部分,我們提出具三面閘極的奈米線的矽-氧化矽-氮化矽-氧化矽-複晶矽(SONOS)非揮發性複晶矽薄膜記憶體的結構來改善一般傳統的複晶矽薄膜電晶體(TFT)的特性。實驗結果指出,由於三向閘極及額外的轉角電流貢獻,使奈米線結構SONOS非揮發性複晶矽薄膜記憶體具有較佳之電性特性。此外,具有十條奈米線通道的SONOS非揮發性複晶矽薄膜記憶體較其他的薄膜電晶體(如單通道或五條奈米線通道的非揮發性複晶矽薄膜記憶體)有著更好的電性,主要是由於較多的轉角數目及其轉角效應所引起的閘極邊側散發的邊際電場造成的較大的電場,使得元件具有更好的閘極控制能力。因此,具奈米線結構之SONOS非揮發性複晶矽薄膜記憶體的元件特性主要的改善來自於電力線聚集所產生的高電場效應。在此,所提出之奈米線SONOS揮發性複晶矽薄膜記憶體因具有較好之閘極控制能力,所以有較快的寫入/抹除效率,此外,這樣的元件也具有良好之耐操度與資料保存特性。
在論文的第二部分,我們將探討具奈米線結構之SONOS非揮發性複晶矽薄膜記憶體的二位元效應。由於氮化矽為局部離散的電子捕陷機制,在適當的操作條件下,可在一個單元內儲存兩個位元。在此研究我們採用通道熱電子 (Channel Hot Electron:CHE) 的寫入機制和通道熱電洞注入 (Hot Hole Injection:HHI) 的抹除機制,研究結果顯示出兩位元的寫入與抹除並不會互相影響,證實非揮發性記憶體可以兩個位元操作。
Chapter 1
[1.1]. H. Oshima and S. Morozumi, “Future trends for TFT integrated circuits on glass substrates,” IEDM Tech. Dig., 157, 1989.
[1.2]. M. Stewart, R. S. Howell, L. Pires, and M. K. Hatalis, “Polysilicon TFT technology for active matrix OLED displays,” IEEE Trans. Electron Devices, vol. 48, pp.. 845-851, 2001.
[1.3]. H. Kuriyama et al, “An asymmetric memory cell using a C-TFT for ULSI SRAM,” Symp. On VLSI Tech, pp.38, 1992.
[1.4]. T. Yamanaka, T. Hashimoto, N. Hasegawa, T. Tanala, N. Hashimoto, A. Shimizu, N. Ohki, K. Ishibashi, K. Sasaki, T. Nishida, T. Mine, E. Takeda, and T. Nagano, “Advanced TFT SRAM cell technology using a phase-shift lithography,” IEEE Trans. Electron Devices, Vol. 42, pp.1305-1313,1995.
[1.5]. K. Yoshizaki, H. Takaashi, Y. Kamigaki, T.asui, K. Komori, and H. Katto, “A 95ns 256k CMOS EPROM,” Proc. of IEEE Solid-State Circuits Conference (ISSCC), p.166, 1985
[1.6]. N. D.Young, G. Harkin, R. M. Bunn, D. J. McCulloch, and I. D. French , “The fabrication and characterization of EEPROM arrays on glass using a low-temperature poly-Si TFT process,” IEEE Trans. Electron Devices, Vol. 43, pp. 1930-1936, 1996.
[1.7]. T. Kaneko, U. Hosokawa, N. Tadauchi, Y. Kita, and H. Andoh, “400 dpi integrated contact type linear image sensors with poly-Si TFT's analog readout circuits and dynamic shift registers,” IEEE Trans. Electron Devices, Vol. 38, pp. 1086-1093, 1991.
[1.8]. U. Hayashi, H. Hayashi, M. Negishi, T. Matsushita, “A Thermal Printer Head With Cmos Thin-film Transistors And Heating Elements Integrated On a Chip,” Proc. of IEEE Solid-State Circuits Conference (ISSCC), p. 266 , 1988.
[1.9]. N.Yamauchi, U. Inava, and M. Okamura, “An integrated photodetector-amplifier using a-Si p-i-n photodiodes and poly-Si thin-film transistors,” IEEE Photonic Tech. Lett, Vol. 5, pp. 319-321, 1993.
[1.10]. M. G. Clark, “Current status and future prospects of poly-Si devices,” IEE Proc. Circuits Devices Syst, Vol. 141, pp.133, 1994.
[1.11].Noriyoshi Yamauchi, Jean-Jacques J. Hajjar and Rafael Reif, “Polysilicon Thin-Film Transistors with Channel Length and Width Comparable to or Smaller than the Grain Size of the Thin Film,” IEEE Trans. Electron Devices, Vol. 38, pp 55-60, 1991.
[1.12].Singh Jagar, Mansun Chan, M. C. Poon, Hongmei Wang, Ming Qin, Ping K. Ko, Yangyuan Wang, “Single Grain Thin-Film-Transistor (TFT) with SOI CMOS Performance Formed by Metal-Induced-Lateral-Crystallization,” IEDM Tech. Dig., pp. 293-296, 1999.
[1.13].K. Nakazawa, “Recrystallization of amorphous silicon films deposited by low-pressure chemical vapor deposition from Si2H6 gas,” J. Appl. Phys, Vol. 69, pp. 1703-1706, 1991.
[1.14].T. J. King and K. C. Saraswat, “Low-temperature fabrication of poly-Si thin-film transistors,” IEEE Electron Device Lett, Vol. 13, pp. 309-311, 1992.
[1.15].H. Kuriyama, S. Kiyama, S. Noguchi, T. Kuahara, S. Ishida, T. Nohda, K. Sano, H. Iwata, S. Tsuda, and S. Nakano, “High mobility poly-Si TFT by a new excimer laser annealing method for large area electronics,” IEDM Tech. Dig, Vol. 91, pp. 563, 1991.
[1.16].K. Nakazawa, “Recrystallization of amorphous silicon films deposited by low-pressure chemical vapor deposition from Si2H6 gas,” J. Appl. Phys, Vol. 69, pp. 1703-1706, 1991.
[1.17].T. J. King and K. C. Saraswat, “Low-temperature fabrication of poly-Si thin-film transistors,” IEEE Electron Device Lett, Vol. 13, pp. 309-311, 1992.
[1.18].H. Kuriyama, S. Kiyama, S. Noguchi, T. Kuahara, S. Ishida, T. Nohda, K. Sano, H. Iwata, S. Tsuda, and S. Nakano, “High mobility poly-Si TFT by a new excimer laser annealing method for large area electronics,” IEDM Tech. Dig, Vol. 91, pp. 563, 1991.
[1.19].D. Kahng and S. M. Sze, “A floating gate and its application to memory devices”, Bell Syst. Tech, J., Vol. 46, pp. 1288 , 1967.
[1.20]. J. D. Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Transaction on Nanotechnology, Vol. 1, pp. 72, 2002.
[1.21].M. H. White, Y. Yang, A. Purwar, and M. L. French, ”A low voltage SONOS nonvolatile semiconductor memory technology”, IEEE Int’l Nonvolatile Memory Technology Conference, pp.52, 1996.
[1.22].M. H. White, D. A. Adams, and J. Bu, “On the go with SONOS”, IEEE circuits & devices, Vol. 16, pp. 22, 2000.
[1.23].J. S. Witters, G. Groeseneken and H. E. Maes, “Analysis and modeling of on-chip high-voltage generator circuits for use in EEPROM circuits,” IEEE Jounal of Solid State Circuits, pp. 1372, 1989.
[1.24].S. Tiwari, F. Rana, K. Chan, H. Hanafi, C. Wei, and D. Buchanan, “Volatile and non-volatile memories in silicon with nano-crystal storage”, IEEE Int. Electron Devices Meeting Tech. Dig., pp. 521, 1995.
[1.25].J. J. Welser, S. Tiwari, S. Rishton, K. Y. Lee, and Y. Lee, “Room temperature operation of a quantum-dot flash memory”, IEEE Electron Device Lett., Vol. 18, pp. 278, 1997.
[1.26].Y. C. King, T. J. King, and C. Hu, “MOS memory using germanium nanocrystals formed by thermal oxidation of Si1-x Gex”, IEEE Int. Electron Devices Meeting Tech. Dig., pp. 115, 1998.
[1.27].Y. C. Wu, T. C. Chang , P. T. Liu, C. S. Chen, C. H. Tu, H. W. Zan, Y. H. Tai, and C. Y. Chang, ‘“High-Performance Polycrystalline Silicon Thin-Film Transistor with Multiple Nano-Wire Channels and Lightly-Doped Drain Structure”, Appl. Phys. Lett., vol. 84, pp. 3822-3824, 2004.
[1.28].K. Yoneda, R. Yokoyama and T. Yamada, “Development trends of LTPS TFT LCDs for mobile applications,” in Proc. Symp. VLSI Circuits, pp. 85–90, 2001.
[1.29].H. Tokioka, M. Agari, M. Inoue, T. Yamamoto, H. Murai, and H. Nagata, “Low power consumption TFT-LCD with dynamic memory embedded in pixels,” in Proc. SID, pp. 280–283, 2001.
Chapter 2
[2.1]. T. Y. Chan, K. K. Young, C.Hu, “A True Single Transistor Oxide-Nitride-Oxide EEPROM”, IEEE Electron Device Letters, EDL-8, No- 3, pp. 93-95,1987.
[2.2]. P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells-an overview,” Proceedings of IEEE, Vol. 85, pp. 1248, 1997.
[2.3]. M. Woods, Nonvolatile Semiconductor Memories: Technologies, Design, and Application, C. Hu, Ed. New York: IEEE Press, ch. 3, p.59, 1991.
[2.4]. Stanley Wolf, “Silicon Processing for The VLSI ERA”, Vol.3, pp.435.
[2.5]. M. Lenzlinger, “Fowler-Mordheim Tunneling in thermal grown SiO2”, Appl. Phys. Lett., Vol. 40, pp. 278-283, 1969.
[2.6]. P. E. Cottrell, R. R. Troutman, and T. H. Ning, “Hot-electron emission in n-channel IGFETs,” IEEE J. Solid-State Circuits, Vol. 14, pp. 442, 1979.
[2.7]. I. C. Chen, C. Kaya and J. Paterson, “Band-to-band tunneling induced substrate hot-electron (BBISHE) injection: A new programming mechanism for nonvolatile memory devices,” IEDM, pp.263, 1989.
[2.8]. I. C. Chen, D. J. Coleman, and C. W. Teng, “Gate current injection initiated by electron band-to-band tunneling in MOS devices,” IEEE Electron Device Lett., vol. 10, no. 7, pp. 297, 1989.
[2.9]. T. Ohnakado, K. Mitsunaga, M. Nunoshita, H. Onoda, K. Sakakiibara, N. Tsuji, N. Ajika, M. Hiyoshi, “Novel Electron Injection Method Using Band- to-Band Tunneling Induced Hot Electron(BBHE) for Flash Memory with a P-channel Cell” IEDM, pp. 279, 1995.
[2.10].San, K.T.; Kaya, C.; Ma, T.P.; “Effects of erase source bias on flash EPROM device reliability” Electron Devices, IEEE Transactions on Volume 42, Issue 1, pp.150-159, 1995.
[2.11].Steve S. Chung, Cherng-Ming Yih, Shui-Ming Cheng, and Mong-Song Liang, “A New Technique for Hot Carrier Reliability Evaluations of Flash Memory Cell After Long-Term Program/Erase Cycles”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 46, NO. 9, SEPTEMBER 1999 1883.
[2.12].Bloom I, Pavan P, Eitan B. NROMTM––a new technology for non-volatile memory products. Solid State Electron, Vol. 46, pp. 1757–63, 2002.
[2.13].Swift CT et al. An embedded 90 nm SONOS nonvolatile memory utilizing hot electron programming and uniform tunnel erase. In: International Electronics Device Meeting (IEDM), San Francisco, CA, 2002.
[2.14].Y. Wang , Y. Zhao, B.M. Khan, C.L. Doherty, J.D. Krayer, M.H. White, “A novel SONOS nonvolatile flash memory device using substrate hot-hole injection for write and gate tunneling for erase,” Solid-State Electronics, pp.2031-2034, 2004.
[2.15].U.S. Patent 6,011,725 “Two Bit Non-Volatile Electrically Erasableb and Programmable Semiconductor Memory Cell Utilizing Asymmetrical Charge Trapping”
[2.16].W. J. Tsai, N. K. Zous, C. J. Liu, C. C. Liu, C. H. Chen, Tahui Wang, Sam Pan and Chin-Yuan Lu, “Data Retention Behavior of a SONOS Type Two-Bit Storage Flash Cell,” Electron Devices Meeting, IEDM Technical Digest. International, pp.32.6.1~32.6.4, 2001.
[2.17].Yakov Roizin, Micha Gutman, Efraim Aloni, Victor Kairys, Pavel Zisman, “Retention Characteristic of microFlash Memory (Activation Energy of Traps in the ONO stack),” in Proc. NVMW, Monterey, CA, pp. 128–129, 2001.
[2.18].W. J Tsai, S. H. Gu, N. K. Zous, C. C. Yeh, C.C. Liu, C. H. Chen, Tahui Wang, Sam Pan and Chih-Yuan Lu, “Cause of Data Retention Loss in a Nitride-Based Localized Trapping Storage Flash Memory Cell,” IEEE 40th Annual International Reliability Physics Symposium, pp. 34-38, 2002.
[2.19].P. Cappelletti, R. Bez, D. Cantarelli, and L. Fratin, “Failure mechanisms of Flash cell in program/erase cycling,” IEDM Tech. Dig., pp. 291–294, 1994.
[2.20].Roberto Bez, Emilic Camerlenghi, Alberto Modelli, and Angelo Visconti, “Introduction to Flash Memory,” Proc. IEEE, Vol. 91, pp. 489-502, 2003.
Chapter 4
[4.1]. B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Frommer, and D. Finzi, “NROM: A novel localized trapping, 2-bit nonvolatile memory cell” IEEE Trans. Electron Devices, Vol. 21, pp. 543 - 545, 2000.