簡易檢索 / 詳目顯示

研究生: 蘇育陞
Yu-Sheng Su
論文名稱: 添加BaO-ZnO-Li2O-B2O3-SiO2玻璃對BaTi4O9的燒結行為與微波介電性質之影響
Low-Fire Processing and Microwave Dielectric Properties of BaTi4O9 with BaO-ZnO-Li2O-B2O3-SiO2 Glass
指導教授: 簡朝和
Jau-Ho Jean
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 28
中文關鍵詞: 低溫共燒陶瓷微波介電性質助燒玻璃
外文關鍵詞: LTCC, BaO-ZnO-Li2O-B2O3-SiO2, ZnO-Li2O-B2O3-SiO2, BaTi4O9, BaTi5O11, glass
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主題探討BaO-ZnO-Li2O-B2O3-SiO2(BZLBS)玻璃以及ZnO-Li2O-B2O3-SiO2(ZLBS)玻璃的添加對BaTi4O9陶瓷粉末燒結以及微波介電性質的影響。
    玻璃中BaO的添加(BZLBS玻璃)小幅提高了玻璃轉換點、軟化點及熔點,此外也改善了與BaTi4O9間的潤濕行為。選用以上兩種玻璃作為BaTi4O9的助燒劑可大幅降低燒結溫度至900℃~925℃左右,其中BZLBS玻璃相對於ZLBS玻璃有較好的助燒效果,原因除了BZLBS玻璃具有較佳的潤濕性外,燒結時ZLBS玻璃與BaTi4O9反應造成大量的相變化,生成BaTi5O11新相的過程中阻礙了燒結緻密化的行為,而含有BaO的BZLBS玻璃可抑制元素Ba的擴散,阻止新相的產生,燒結緻密程度以及介電性質也因此獲得改善。
    在微波介電性質方面,在925℃燒結溫度下,添加5 vol.% BZLBS玻璃於BaTi4O9中具有最佳的介電性質:介電常數(K)為33.5、品質因子(Q)為3030而Q × f0為19720 GHz。


    目錄 一、前言 1 二、實驗方法 3 2.1 粉末與試片製備 3 2.1.1 BaTi4O9粉末 3 2.1.2 BaO-ZnO-Li2O3-B2O3-SiO2玻璃粉末 3 2.1.3 BaTi4O9粉末與BaO-ZnO-Li2O3-B2O3-SiO2玻璃混合 4 2.1.4 量測試片準備 5 2.1.5 脫脂和燒結(Binder Burnout and Sintering) 5 2.2 材料性質量測 6 2.2.1 相對燒結密度(Relative Sintered Density) 6 2.2.2 玻璃基本性質量測 7 2.2.3 燒結收縮曲線量測 7 2.2.4 X-ray繞射分析(X-ray Diffraction Analysis) 8 2.2.5 微結構觀察及元素分佈分析 8 2.2.6 低頻介電性質量測 9 2.2.7 高頻介電性質量測 9 三、結果與討論 11 3.1 BaO-ZnO-Li2O3-B2O3-SiO2玻璃 & ZnO-Li2O3-B2O3-SiO2玻璃 11 3.1.1 BZLBS & ZLBS玻璃的基本性質 11 3.1.2 BZLBS & ZLBS玻璃的結晶行為 12 3.2 添加BZLBS & ZLBS玻璃對BaTi4O9的影響 14 3.2.1 BZLBS & ZLBS玻璃與BaTi4O9間的潤濕情形 14 3.2.2 添加BZLBS & ZLBS玻璃後的燒結緻密情形 14 3.2.3 添加BZLBS & ZLBS玻璃後的燒結收縮曲線分析 15 3.2.4 添加BZLBS & ZLBS玻璃後對介電性質的影響 16 3.3 BZLBS & ZLBS玻璃與BaTi4O9的燒結機制 18 3.3.1 玻璃-陶瓷界面反應分析 18 3.3.2 添加BZLBS & ZLBS玻璃後的結晶行為分析 20 四、結論 23 五、參考文獻 24 表目錄 圖目錄

    參考文獻
    [1] W. Wersing, “High Frequency Ceramic Dielectrics and their Application for Microwave Components,” in Electronic Ceramics, Edited by B. C. H. Steele, Elsevier, London and New York, 67-119, (1991).
    [2] S. J. Fiedziuszko, I. C. Hunter, T. Itoh, Y. Kobayashi, T. Nishikawa, S. N. Stitzer, and K. Wakino, IEEE Trans. Microw. Theor. Tech., MTT-50, 706-20 (2002).
    [3] P. K. Davies, “Materials and Processes for Wireless Communication,” in Ceramic Transactions, 53, Edited by T. Negas, and H. Ling, American Ceramic Society, Westerville, OH, 137-151 (1995).
    [4] R. J. Cava, “Dielectric Materials for Applications in Microwave Communications,” J. Mater. Chem., 11, 54-62 (2001).
    [5] K. Wakino, T. Nishikawa, Y. Ishikawa, and H. Tamura, Br. Ceram. Trans. J., 89, 39-43 (1990).
    [6] H. Kagata, T. Inoue, J. Kato, and T. Ishizaki, “Low-Fire Microwave Dielectric Ceramics and Multilayer Devices with Silver Internal Electrode” in Ceramic Transactions, 32, Edited by K. M. Nair, J. P. Guha, and A. Okamoto, American Ceramic Society, Westerville, OH, 81-90 (1993).
    [7] H. M. O’Bryan, J. Thomson, and J. K. Plourde, “A New BaO-TiO2 Compound with Temperature-Stable High Permittivity and Low Microwave Loss,” J. Am. Ceram. Soc., 57, 450-53 (1974).
    [8] S. G. Mhaisalkar, W. E. Lee, and D. W. Readey, “Processing and Characterization of BaTi4O9,” J. Am. Ceram. Soc., 72[11], 2154-58 (1989).
    [9] H. M. O’Bryan, and J. Thomson, “Phase Equilibrium in the TiO2-Rich Region of the System BaO-TiO2,” J. Am. Ceram. Soc., 57[12], 522–26 (1974).
    [10] S. Y. Zhang, X. Wu, X. L. Chen, M. He, Y. G. Cao, Y. T. Song, and D. Q. Ni, “Phase Relations in the BaO-B2O3-TiO2 System and the Crystal Structure of BaTi(BO3)2,” Mater. Res. Bull., 38, 783-88 (2003).
    [11] S. G. Mhaisalkar, D. W. Readey, and S. A. Akbar, “Microwave Dielectric Properties of Doped BaTi4O9,” J. Am. Ceram. Soc., 74[8], 1894–98 (1991).
    [12] T. Negas, G. Yeager, S. Bell, and N. Coats, “BaTi4O9/Ba2Ti9O20-Based Ceramics Resurrected for Modern Microwave Applications,” J. Am. Ceram. Soc. Bull., 72, 80–89 (1993).
    [13] R. R. Tummala, “Ceramic and Glass-Ceramic Packaging in the 1990s,” J. Am. Ceram. Soc., 74[5], 895–908 (1991).
    [14] C. Q. Scrantom, and J. C. Lawson, “LTCC Technology: Where We Are and Where We're Going-II,” in IEEE Symposium on Technologies for Wireless Applications, 193-200 (1999).
    [15] I. Maclaren, and C. B. Ponton, “Low Temperature Hydrothermal Synthesis of Ba(Mg1/3Ta2/3)O3 Sol-Derived Powders,” J. Mater. Sci., 33, 17–22 (1998).
    [16] O. Renoult, J. P. Boilot, F. Chaput, R. Papiernik, L. G. Hubert-Pfalzgraf, and M. Lejeune, “Sol–Gel Processing and Microwave Characteristics of Ba(Mg1/3Ta2/3)O3 Dielectrics,” J. Am. Ceram. Soc., 75, 3337–40 (1992).
    [17] C. H. Lu, and C. C. Tsai, “Homogeneous Precipitation Synthesis and Sintering Behavior of Microwave Dielectrics: Ba(Mg1/3Ta2/3)O3,” Mater. Sci. Eng. B., 55, 95–101 (1998).
    [18] M. H. Liang, S. Y. Wu, C. T. Hu, and I. N. Li, ‘‘Enhancing the Sinterability of Ba(Mg1/3Ta2/3)O3 Dielectrics by Using Chemically-Derived Powders,’’ Mater. Chem. Phys., 79, 276–81 (2003).
    [19] T. Takada, S. F. Wang, S. Yoshicawa, S. J. Jang, and R. E. Newnham, “Effect of Glass Addition on BaO-TiO2-WO3 Microwave Ceramics,” J. Am. Ceram. Soc., 77[7], 1909-16 (1994).
    [20] T. Takada, S. F. Wang, S. Yoshikawa, S. J. Jang, and R. E. Newnham, “Evolution of Interfacial Microstructure between Barium Titanate and Binary Glass,” J. Am. Ceram. Soc., 77[3] 852-56 (1994).
    [21] S. H. Knickerbocker, A. H. Kumar, and L. W. Herron, “Cordierite Glass-Ceramics for Multilayer Ceramic Packaging,” Am. Ceram. Bull, 72, 90-95 (1993).
    [22] H. P. Jeon, S. K. Lee, and S. W. Kim, “Effects of BaO-B2O3-SiO2 Glass Additive on Densification and Dielectric Properties of BaTiO3 Ceramics,” Mater. Chem. Phys., 94, 185-89 (2005).
    [23] M. Abe, T. Nanataki, and S. Yano, “Dielectric Ceramic Composition Containing ZnO-B2O3-SiO2 Glass, Method of Preparing the Same, and Resonator and Filter Using the Dielectric Ceramic Composition,” US Patent 5,493,262 (1996).
    [24] C. F. Yang, “The Microwave Characteristics of Glass-BaTi4O9 Ceramics,” Jpn. J. Appl. Phys., 38, 3576-79 (1999).
    [25] D. W. Kim, D. G. Lee, and K. S. Hong, “Low-Temperature Firing and Microwave Dielectric Properties of BaTi4O9 with Zn-B-O Glass System,” Mater. Res. Bull., 36, 585-95 (2001).
    [26] S. G. Lu, K. W. Kwok, H. L. W. Chan, and C. L. Choy, “Structural and Electrical Properties of BaTi4O9 Microwave Ceramics Incorporated with Glass Phase,” Mater. Sci. and Eng., B99, 491-94 (2003).
    [27] C. M. Cheng, C. F. Yang, S. H. Lo, and T. Y. Tseng, “Sintering BaTi4O9/Ba2Ti9O20-Based Ceramics by Glass Addition,” J. Eur. Ceram. Soc., 20, 1061-67 (2000).
    [28] M. C. Chou, and J. H. Jean, “Low-Fire Processing of Microwave BaTi4O9 Dielectric with BaO–ZnO–B2O3 Glass,” J. Am. Ceram. Soc., 89[3], 786-91 (2006).
    [29] B. W. Hakki, and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range,” IRE Trans. Microwave Theory Tech., MTT-8, 402-10 (1960).
    [30] Y. Kobayashi, and M. Katoh, “Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method,” IEEE Trans. Microwave Theory Tech., MTT-33, 586-92 (1985).
    [31] Y. J. Choi, J. H. Park, W. J. Ko, S. Nahm, and J. G. Park, “Low Temperature Sintering of BaTi4O9-Based Middle-K Dielectric Composition for LTCC applications,” J. Electro- Ceram., 14[2], 157-62 (2005).
    [32] H. M. O’Bryan and J. Thomson, “Preparation of BaTi5O11 by Solid-state Reaction,” J. Am. Ceram. Soc., 58, 454 (1975).
    [33] T. Jaakola, A. Uusimaki, and S. Leppavuori, “Importance of Homogeneous Composition in Sintering Behavior of Ba2Ti9O20 Ceramics,” Int. J. High Technol. Ceram., 2, 195-206 (1980).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE