簡易檢索 / 詳目顯示

研究生: 陳仲宇
Chen, Chung-Yu
論文名稱: 腫瘤相關抗原Globo-H與SSEA-3之合成研究
Toward the Synthesis of Tumor-Associated Antigens Globo-H and SSEA-3
指導教授: 林俊成
Lin, Chun-Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 117
中文關鍵詞: 醣基化反應
外文關鍵詞: Globo-H, SSEA-3
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Globo-H六醣體為乳癌細胞表面大量表達的碳水化合物抗原,目前已成為開發乳癌疫苗的熱門目標。近年研究發現,Globo-H缺乏岩藻糖之五醣體前趨物—SSEA-3於乳癌幹細胞上的表現量較Globo-H高,因此亦逐漸成為另一個乳癌疫苗的開發標的。
    本論文之目的在於Globo-H與SSEA-3的合成方法研究。於合成策略上,以一鍋化醣基化反應為目標,希望利用已知的方法,設計適合的建構單元,以期能應用在兩種醣體的合成。在α-D-Gal-(1→4)-β-D-Gal-(1→4)-β-D-Glc三醣體合成中,乳糖受體以芐基保護時可得到醣苷鍵完全為α位向之產物,不會產生β位向之產物。合成β-D-Gal-(1→3)-β-D-GalNAc雙醣片段時,半乳糖胺受體以價格低廉之半乳糖為起始物,C-2位置製備成疊氮基,而半乳糖予體之C-2位置選用苯甲醯基保護時可控制醣苷鍵為β位向,此雙醣體亦嘗試改用苯甲醯基與Troc保護之受體提升醣基化反應之效率。我們使用合成出的雙醣與三醣片段,完成五醣體的合成。於本論文之合成策略中,進行醣基化反應時,醣苷鍵之α、β位向皆有良好的選擇性,為此類醣體之合成提供一有效而方便的路徑。


    Globo-H hexasaccharide is a tumor-associated carbohydrate antigen that is highly expressed on the surface of breast cancer cells. This hexasaccharide has been aimed at development of anti-breast cancer vaccine. In recent study, the pentasaccharide precursor of Globo-H, SSEA-3, was found that its expression in breast cancer stem cells was higher than Globo-H. As a result, SSEA-3 has become another candidate for anti-breast cancer vaccine.
    In this thesis we focus on the synthetic methods of Globo-H and SSEA-3. Our strategy is base on one-pot glycosylation method and we want synthesize these two oligosaccharides by using well-know protocols. In the synthesis of α-D-Gal-(1→4)-β-D-Gal-(1→4)-β-D-Glc trisaccharide, we can get exclusive α product by using benzyl-protected lactose acceptor, and no β isomer was observed. In the synthesis of β-D-Gal-(1→3)-β-D-GalNAc disaccharide, we use cheap and commercial available galactose as starting material of GalNAc acceptor, and we used azide group at C-2 position. The exclusive β disaccharide can be synthesized by using benzoyl group at C-2 position of galactose donor. We use the benzoyl- and Troc-protected GalNAc acceptor to improve the efficiency of glycosylation. The pentasaccharide compound has been synthesized by using our building blocks. In this thesis, the α/β selectivity is good in every glycosylation reaction. We established a simple and efficient pathway to achieve the synthesis of this oligosaccharide.

    摘要 i 謝誌 iii 目錄 v 圖目錄 vii 表目錄 ix 簡寫表 x 第一章 緒論 1 1-1 腫瘤相關抗原Globo-H與SSEA-3 1 1-2 文獻回顧 4 1-2-1 1,2-順式醣苷鍵之合成研究 4 1-2-2 Globo-H與SSEA-3之合成研究 7 1-3 研究動機與目的 17 第二章 結果與討論 18 第三章 結論 41 第四章 實驗部分 42 4-1 一般實驗方法 42 4-2 醣基化反應之一般實驗步驟 43 4-2-1 以NIS/TfOH為promoter 43 4-2-2 以TMSOTf為promoter 44 4-2-2-1 醣予體製備方法 44 4-2-2-2 醣基化反應實驗步驟 44 4-3 實驗步驟與光譜資料 45 參考文獻 67 附錄 74 附錄目錄 75

    1. Danishefsky, S. J.; Allen, J. R. From the laboratory to the clinic: A retrospective on fully synthetic carbohydrate-based anticancer vaccines. Angew. Chem., Int. Ed. 2000, 39, 836-863.
    2. Keding, S. J.; Danishefsky, S. J. In Carbohydrate-based Drug Discovery; Wong, C.-H., Ed.; Wiley-VCH: Weinheim, Germany, 2003; Vol. 2, p 381.
    3. Dube, D. H.; Bertozzi, C. R. Glycans in cancer and inflammation - potential for therapeutics and diagnostics. Nat. Rev. Drug. Discov. 2005, 4, 477-488.
    4. Kannagi, R.; Levery, S.; Ishigami, F.; Hakomori, S.; Shevinsky, L.; Knowles, B.; Solter, D. New globoseries glycosphingolipids in human teratocarcinoma reactive with the monoclonal antibody directed to a developmentally regulated antigen, stage-specific embryonic antigen 3. J. Biol. Chem. 1983, 258, 8934-8942.
    5. Zhang, S.; Zhang, H.; Reuter, V.; Slovin, S.; Scher, H.; Livingston, P. Expression of potential target antigens for immunotherapy on primary and metastatic prostate cancers. Clin. Cancer Res. 1998, 4, 295-302.
    6. Hakomori, S.-I.; Zhang, Y. Glycosphingolipid antigens and cancer therapy. Chem. Biol. 1997, 4, 97-104.
    7. Zhang, S.; Cordon-Cardo, C.; Zhang, H. S.; Reuter, V. E.; Adluri, S.; Hamilton, W. B.; Lloyd, K. O.; Livingston, P. O. Selection of tumor antigens as targets for immune attack using immunohistochemistry: I. Focus on gangliosides. Int. J. Cancer 1997, 73, 42-49.
    8. Menard, S.; Tagliabue, E.; Canevari, S.; Fossati, G.; Colnaghi, M. I. Generation of monoclonal antibodies reacting with normal and cancer Cells of Human Breast. Cancer Res. 1983, 43, 1295-1300.
    9. Kudryashov, V.; Ragupathi, G.; Kim, I. J.; Breimer, M. E.; Danishefsky, S. J.; Livingston, P. O.; Lloyd, K. O. Characterization of a mouse monoclonal IgG3 antibody to the tumor-associated globo H structure produced by immunization with a synthetic glycoconjugate. Glycoconjugate J. 1998, 15, 243-249.
    10. Bilodeau, M. T.; Park, T. K.; Hu, S.; Randolph, J. T.; Danishefsky, S. J.; Livingston, P. O.; Zhang, S. Total synthesis of a human breast tumor associated antigen. J. Am. Chem. Soc. 1995, 117, 7840-7841.
    11. Slovin, S. F.; Ragupathi, G.; Adluri, S.; Ungers, G.; Terry, K.; Kim, S.; Spassova, M.; Bornmann, W. G.; Fazzari, M.; Dantis, L.; Olkiewicz, K.; Lloyd, K. O.; Livingston, P. O.; Danishefsky, S. J.; Scher, H. I. Carbohydrate vaccines in cancer: Immunogenicity of a fully synthetic globo H hexasaccharide conjugate in man. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 5710-5715.
    12. Wang, Z. G.; Williams, L. J.; Zhang, X. F.; Zatorski, A.; Kudryashov, V.; Ragupathi, G.; Spassova, M.; Bornmann, W.; Slovin, S. F.; Scher, H. I.; Livingston, P. O.; Lloyd, K. O.; Danishefsky, S. J. Polyclonal antibodies from patients immunized with a globo H-keyhole limpet hemocyanin vaccine: Isolation, quantification, and characterization of immune responses by using totally synthetic immobilized tumor antigens. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 2719-2724.
    13. Gilewske, T.; Ragupathi, G.; Bhuta, S.; Williams, L. J.; Musselli, C.; Zhang, X. F.; Bencsath, K. P.; Panageas, K. S.; Chin, J.; Hudis, C. A.; Norton, L.; Houghton, A. N.; Livingston, P. O.; Danishefsky, S. J. Immunization of metastatic breast cancer patients with a fully synthetic Globo H conjugate: A phase I trial. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 3270-3275.
    14. Dontu, G.; Al-Hajj, M.; Abdallah, W. M.; Clarke, M. F.; Wicha, M. S. Stem cells in normal breast development and breast cancer. Cell Prolif. 2003, 36, 59-72.
    15. Chang, W. W.; Lee, C. H.; Lee, P.; Lin, J.; Hsu, C. W.; Hung, J. T.; Lin, J. J.; Yu, J. C.; Shao, L. E.; Yu, J.; Wong, C. H.; Yu, A. L. Expression of Globo H and SSEA3 in breast cancer stem cells and the involvement of fucosyl transferases 1 and 2 in Globo H synthesis. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 11667-11672.
    16. Boons, G.-J. Recent developments in chemical oligosaccharide synthesis. Contemp. Org. Synth. 1996, 3, 173-200.
    17. Bosse, F.; Marcaurelle, L. A.; Seeberger, P. H. Linear synthesis of the tumor-associated carbohydrate antigens Globo-H, SSEA-3, and Gb3. J. Org. Chem. 2002, 67, 6659-6670.
    18. Hsieh, S.-Y.; Jan, M.-D.; Patkar, L. N.; Chen, C.-T.; Lin, C.-C. Synthesis of a carboxyl linker containing Pk trisaccharide. Carbohydr. Res. 2005, 340, 49-57.
    19. Dohi, H.; Nishida, Y.; Takeda, T.; Kobayashi, K. Convenient use of non-malodorous thioglycosyl donors for the assembly of multivalent globo- and isoglobosyl trisaccharides. Carbohydr. Res. 2002, 337, 983-989.
    20. Pornsuriyasak, P.; Demchenko, A. V. Synthesis of cancer-associated glycoantigens: stage-specific embryonic antigen 3 (SSEA-3). Carbohydr. Res. 2006, 341, 1458-1466.
    21. Zhu, T.; Boons, G.-J. Thioglycosides protected as trans-2,3-cyclic carbonates in chemoselective glycosylations. Org. Lett. 2001, 3, 4201-4203.
    22. Imamura, A.; Ando, H.; Korogi, S.; Tanabe, G.; Muraoka, O.; Ishida, H.; Kiso, M. Di-tert-butylsilylene (DTBS) group-directed α-selective galactosylation unaffected by C-2 participating functionalities. Tetrahedron Lett. 2003, 44, 6725-6728.
    23. Kim, J.-H.; Yang, H.; Boons, G.-J. Stereoselective glycosylation reactions with chiral auxiliaries. Angew. Chem., Int. Ed. 2005, 44, 947-949.
    24. Park, T. K.; Kim, I. J.; Danishefsky, S. J. A total synthesis of a stage specific pentasaccharide embryogenesis marker. Tetrahedron Lett. 1995, 36, 9089-9092.
    25. Allen, J. R.; Allen, J. G.; Zhang, X. F.; Williams, L. J.; Zatorski, A.; Ragupathi, G.; Livingston, P. O.; Danishefsky, S. J. A second generation synthesis of the MBr1 (Globo-H) breast tumor antigen: new application of the n-Pentenyl glycoside method for achieving complex carbohydrate protein linkages. Chem. -Eur. J. 2000, 6, 1366-1375.
    26. Lassaletta, J. M.; Schmidt, R. R. Synthesis of complex glycosphingolipids of the globo series. Liebigs Ann.Chem. 1996, 1417-1423.
    27. Lassaletta, J. M.; Carlsson, K.; Garegg, P. J.; Schmidt, R. R. Total synthesis of sialylgalactosylgloboside: stage-specific embryonic antigen 4. J. Org. Chem. 1996, 61, 6873-6880.
    28. Zhu, T.; Boons, G.-J. A two-directional and highly convergent approach for the synthesis of the tumor-associated antigen Globo-H. Angew. Chem., Int. Ed. 1999, 38, 3495-3497.
    29. Werz, D. B.; Castagner, B.; Seeberger, P. H. Automated synthesis of the tumor-associated carbohydrate antigens Gb-3 and Globo-H: incorporation of α-galactosidic linkages. J. Am. Chem. Soc. 2007, 129, 2770-2771.
    30. Douglas, N. L.; Ley, S. V.; Lucking, U.; Warriner, S. L. Tuning glycoside reactivity: New tool for efficient oligosaccharide synthesis. J. Chem. Soc., Perkin Trans. 1 1998, 51-66.
    31. Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. Programmable one-pot oligosaccharide synthesis. J. Am. Chem. Soc. 1999, 121, 734-753.
    32. Burkhart, F.; Zhang, Z.; Wacowich-Sgarbi, S.; Wong, C.-H. Synthesis of the Globo H hexasaccharide using the programmable reactivity-based one-pot strategy. Angew. Chem., Int. Ed. 2001, 40, 1274-1277.
    33. Huang, C. Y.; Thayer, D. A.; Chang, A. Y.; Best, M. D.; Hoffmann, J.; Steve, H.; Wong, C. H. Carbohydrate microarray for profiling the antibodies interacting with Globo H tumor antigen. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15-20.
    34. Huang, X.; Huang, L.; Wang, H.; Ye, X. S. Iterative one-pot synthesis of oligosaccharides. Angew. Chem., Int. Ed. 2004, 43, 5221-5224.
    35. Wang, Z.; Zhou, L.; El-Boubbou, K.; Ye, X.-S.; Huang, X. Multi-component one-pot synthesis of the tumor-associated carbohydrate antigen Globo-H based on preactivation of thioglycosyl donors. J. Org. Chem. 2007, 72, 6409-6420.
    36. Wang, Z.; Gilbert, M.; Eguchi, H.; Yu, H.; Cheng, J.; Muthana, S.; Zhou, L.; Wang, P. G.; Chen, X.; Huang, X. Chemoenzymatic syntheses of tumor-associated carbohydrate antigen Globo-H and stage-specific embryonic antigen 4. Adv. Synth. Catal. 2008, 350, 1717-1728.
    37. Wang, Y.; Ye, X.-S.; Zhang, L. H. Oligosaccharide assembly by one-pot multi-step strategy. Org. Biomol. Chem. 2007, 5, 2189-2200.
    38. Kamath, V. P.; Yeske, R. E.; Gregson, J. M.; Ratcliffe, R. M.; Fang, Y. R.; Palcic, M. M. Large-scale chemical and chemo-enzymatic synthesis of a spacer-containing Pk-trisaccharide. Carbohydr. Res. 2004, 339, 1141-1146.
    39. Bhattacharyya, S.; Magnusson, B. G.; Wellmar, U.; Nilsson, U. J. The p-methoxybenzyl ether as an in situ-removable carbohydrate-protect-
    ing group: a simple one-pot synthesis of the globotetraose tetrasaccharide. J. Chem. Soc., Perkin Trans. 1 2001, 886-890.
    40. Lin, C.-C.; Huang, L.-C.; Liang, P.-H.; Liu, C.-Y.; Lin, C.-C. Large-scale synthesis of per-O-acetylated saccharides and their sequential transformation to glycosyl bromides and thioglycosides. J. Carbohydr. Chem. 2006, 25, 303-313.
    41. Nicolaou, K. C.; Mitchell, H. J.; Rodriguez, R. M.; Fylaktakidou, K. C.; Suzuki, H. Total synthesis of everninomicin 13,384-1-part 3: synthesis of the DE fragment and completion of the total synthesis. Angew. Chem., Int. Ed. 1999, 38, 3345-3350.
    42. Kondo, H.; Aoki, S.; Ichikawa, Y.; Halcomb, R. L.; Ritzen, H.; Wong, C.-H. Glycosyl phosphites as glycosylation reagents: scope and mechanism. J. Org. Chem. 1994, 59, 864-877.
    43. Sherman, A. A.; Mironov, Y. V.; Yudina, O. N.; Nifantiev, N. E. The presence of water improves reductive openings of benzylidene acetals with trimethylaminoborane and aluminium chloride. Carbohydr. Res. 2003, 338, 697-703.
    44. Shie, C.-R.; Tzeng, Z.-H.; Kulkarni, S.-S.; Uang, B.-J.; Hsu, C.-Y.; Hung, S.-C. Cu(OTf)2 as an efficient and dual-purpose catalyst in the regioselective reductive ring opening of benzylidene acetals. Angew. Chem., Int. Ed. 2005, 44, 1665-1668.
    45. Johnsson, R.; Olsson, D.; Ellervik, U. Reductive openings of acetals: Explanation of regioselectivity in borane reductions by mechanistic studies. J. Org. Chem. 2008, 73, 5226-5232.
    46. Adinolfi, M.; Iadonisi, A.; Ravid, A.; Schiattarella, M. Efficient and direct synthesis of saccharidic 1,2-ethylidenes, orthoesters, and glycals from peracetylated sugars via the in situ generation of glycosyl iodides with I2/Et3SiH. Tetrahedron Lett. 2003, 44, 7863-7866.
    47. Lemieux, R. U.; Ratcliffe, R. M. The azidonitration of tri-O-acetyl-D-galactal. Can. J. Chem. 1979, 57, 1244-1249.
    48. Alper, P. B.; Hendrix, M.; Sears, P.; Wong, C.-H. Probing the specificity of aminoglycoside-ribosomal RNA interactions with designed synthetic analogs. J. Am. Chem. Soc. 1998, 120, 1965-1978.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE