簡易檢索 / 詳目顯示

研究生: 陳錫慧
Shyi-huey Chen
論文名稱: 指定需求集下多階層實驗的最佳設計
The Best Design of Multistratum Experiment For Specified Requirement Sets
指導教授: 鄭少為
Shao-Wei Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 58
中文關鍵詞: 多階層實驗設計巢狀區塊結構需求集設計鍵定義對比
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在多階層實驗設計裡, 其主要結構有處理結構、區塊結構, 為了找出處理安排到區塊的法則, 我們在此使用Patterson 與Bailey(1978)
    所提出的設計鍵, 其主要寫出主效應與區塊效應混同的情況, 且利用設計鍵即可找出設計矩陣。在實驗設計文獻裡, 若要估計實驗者所指
    定的需求集, 我們可使用Franklin 與Bailey(1977) 所發展的一套
    演算法, 然而該演算法僅適用於估計需求集裡效應之情況, 當有區塊結構時, 其無法找出能精確估計需求集裡效應之設計矩陣。

    本篇論文考慮區塊結構為巢狀結構的實驗, 為了能更精確估計需求集裡的效應, 希望能找出讓需求集裡所有效應落入特徵值最小階層的設計鍵。我們提出分群方法並推廣Franklin 與Bailey(1977) 所提出的搜尋表法,來找出能讓需求集裡所有效應落入特徵值最小階層的設計鍵。結果發現, 對於給定的設計鍵, 我們可使用設計鍵的分群
    與需求集分群間的關係, 來評判該組設計鍵能否讓需求集裡所有的效應落到特徵值最小階層。我們修改Franklin 與Bailey(1977) 所提出的搜尋表,行改為最後一層區塊效應、列改為處理因子,且不合格集合除了有不合格定義對比, 還須增加不合格區塊效應, 利用表格及不合格集合發展一套演算法來找出能將需求集裡所有效應落入特徵值
    最小階層的設計鍵。另外, 我們亦利用需求集的分群方式提出另一套演算法來搜尋能將需求集裡所有的效應落到特徵值最小階層之設計鍵。不論使用搜尋表法或是分群法,其結果皆可直接找出讓需求集裡所有效應落入特徵值最小階層的設計鍵。其次, 為了評判設計鍵
    的優劣, 我們結合Ke 與Tang(2003) 所提出minimun N-aberation以
    及Cheng 與Wu(2002) 所提出選取最佳區塊設計的方法, 發展出一套方法來評判設計鍵的優劣, 並利用該評判設計鍵的準則提出一套
    可直接找到最佳設計鍵的演算法。


    1 緒論1 2 文獻探討3 2.1 選取2^n-m定義對比子群. . . . . . . . . . . . . . 3 2.2 多階層實驗設計. . . . . . . . . . . . . . . . . . 5 2.3 選取好的設計準則. . . . . . . . . . . . . . . . . . 8 2.3.1 Minimum N-Aberration . . . . . . . . . . . . . . . 8 2.3.2 隨機集區化設計準則. . . . . . . . . . . . . . . . .9 2.3.3 比較準則. . . . . . . . . . . . . . . . . . . . . .10 3 分群結構12 3.1 分群種類. . . . . . . . . . . . . . . . . . . . . . 12 3.1.1 設計鍵分群. . . . . . . . . . . . . . . . . . . . .12 3.1.2 需求集分群. . . . . . . . . . . . . . . . . . . . .14 3.2 處理因子數小於或等於虛假因子數. . . . . . . . . . . .17 3.2.1 落入最後一層之處理效應及其個數. . . . . . . . . . .17 3.2.2 存在設計鍵的條件. . . . . . . . . . . . . . . . . 22 3.2.3 最佳第k層限制型態. . . . . . . . . . . . . . . . . 24 3.3 處理因子數大於虛假因子數. . . . . . . . . . . . . . .28 3.3.1 找出合格的定義對比. . . . . . . . . . . . . . . . .28 3.3.2 合格定義對比的影響. . . . . . . . . . . . . . . . .31 4 區塊結構的順序與評判設計鍵準則34 4.1 區塊結構的順序. . . . . . . . . . . . . . . . . . . 34 4.1.1 排序準則. . . . . . . . . . . . . . . . . . . . . 34 4.1.2 相關定理. . . . . . . . . . . . . . . . . . . . . 35 4.2 評判設計鍵的準則. . . . . . . . . . . . . . . . . . 36 4.2.1 符號定義. . . . . . . . . . . . . . . . . . . . . 37 4.2.2 準則. . . . . . . . . . . . . . . . . . . . . . . 37 5 設計鍵的搜尋40 5.1 允許區塊結構改變. . . . . . . . . . . . . . . . . . 40 5.1.1 搜尋表法. . . . . . . . . . . . . . . . . . . . . 40 5.1.2 分群法. . . . . . . . . . . . . . . . . . . . . . 44 5.1.3 兩種搜尋方法優缺點. . . . . . . . . . . . . . . . 47 5.2 區塊結構不變. . . . . . . . . . . . . . . . . . . . 48 5.2.1 程序-限制型態法. . . . . . . . . . . . . . . . . .48 5.2.2 過程合理化. . . . . . . . . . . . . . . . . . . . 50 5.2.3 例子. . . . . . . . . . . . . . . . . . . . . . . 51 6 結論55 參考文獻57

    Bailey,R.A.(2008), Design of Comparative Experiments,Cambridge University Press.
    Cheng, S.-W. andWu, C.F.J.(2002). ”Choice of optimal blocking schemes in two-level and three-level designs,”
    Technometrics, 44, 269-277.
    Franklin, M.F. and Bailey, R.A.(1977). ”Selection of defining contrasts and confounded effects in two-level experiments,”Appl.Statist., 26, 321-326.
    Franklin, M.F.(1985). ”Selection of defining contrasts and confounded effects in pn¡m factorial experiments,” Technometrics, 27, 165-172.
    Greenfield, A.A.(1975). ”Selection of defining contrast in two-level experiments,”Appl.Statist., 25, 64-67.
    Greenfield, A.A.(1977). ”Selection of defining contrast in two-level experimentsa modification,” Appl.Statist., 27, 78.
    Ke, W. and Tang, B.(2003). ”Selecting 2n¡m designs using a minimum abberation criterion when some two-factor
    interactions are important,”Technometrics, 45, 352-360.
    Nelder, J.A.(1965). ”The analysis of randomized experiments with orthogonal block structure.I.Block structure and the null analysis of variance,”
    Proceedings of the Royal Society of London.Series A, Mathematical and Physical Sciences, 283, 147-162.
    Patterson, H. D. and Bailey, R. A.(1978). ”Design keys for factorial experiments,” Appl.Statist., 27, 335-343.
    Wu, C.F.J. and Chen, Y.(1992). ”A graph-aided method for planning two-level experiments when certain interactions
    are important,” Technometrics,34, 162-175.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE