研究生: |
劉韋成 Liu Wei-Cheng |
---|---|
論文名稱: |
以試題反應理論探討學童分數加減解題能力之研究 On the Abilities of solving addition and subtraction problems of Fractional numbers in Elementary School Children – A study based on IRT |
指導教授: |
羅昭強
Law Chiu-Keung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 數理教育研究所 Graduate Institute of Mathematics and Science Education |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | IRT 、CTT 、難易度 、鑑別度 、分數概念 |
外文關鍵詞: | IRT, CTT, difficulty, discrimination, concept of fractions |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要想探討IRT與CTT何者更能清楚反映出學生的真實情況,並進而分析現階段國小學童在同分母分數加減概念上之表現情形。本研究以問卷調查法進行,針對桃園縣一所國民小學進行研究,並選取該校四、五年級各一班的學童作為研究樣本,總計有效樣本數54位。研究工具則採用自編之「分數加減法概念問卷」,其測驗內容包含能力維度與運算維度等兩大維度。
根據資料顯示,本研究主要發現如下:(1)IRT的試題難易度與CTT之試題難易度在試題上之排序達一致性。(2)IRT之試題鑑別度值越高,確實更可以清楚區隔出學生能力的差異。(3)IRT之鑑別度除具可加性外,所導出的能力值更能合理地呈現出學生的能力,並且可以合理地分辨出學生程度的差異。(4)學童學習分數加減計算時,「假分數計算」是屬於較為簡單之計算類型,因此也較容易被學童所接受、學習。學童熟不熟練「帶分數與假分數互換」或「帶分數拆解」,對於學習分數加減概念是具有關鍵性的影響。(5)學童在分數應用題的列式上有不錯之表現。(6)學童在分數的加減運算上,「假分數+假分數」的運算是屬於比較簡單之運算類型,而「假分數+帶分數、帶分數-假分數」則是屬於較為困難的運算類型。
The purpose of the study is to investigate which one can truly reveal students’ real situation, IRT or CTT ? Furthermore, we wanted to know if elementary school students can do addition and subtraction on fraction on the same denominator. The subjects of our research are 4th and 5th students from an elementary school in Taoyuan. The number of sample is 54. A questionnaire about addition and subtraction of fractions was used as our research tool, in which two dimensions are included, mathematical ability and mathematical operation.
The main findings of the study were:
(1)There is consistency between the rank of the item difficulty of IRT and the one of CTT.
(2)The higher value of the item discrimination can differentiate more exaclty between students having abilities.
(3)The value of the discrimination of IRT not only can differentiates between students having abilities,but also has additivity and the value of ability calculated by IRT can represents student’s ability more reasonably.
(4)On Fractional problems,improper fractional calculation is easier calculational type for students to study.Mastery of the skills of mixed number to improper fraction and partitioning whole numbers is important for students to study addition and subtraction problems of fractional numbers.
(5)Students are doing well on writing down the formula of fractional applications.
(6)On fractional operations,the kind of 「improper fraction+improper fraction」is easier operational type.But,these kinds of「improper fraction+mixed number,mixed number-improper fraction」are more difficult.
一 中文部份
余民寧(2009)。試題反應理論(IRT)及其應用。台北,心理。
余民寧(2002)。教育測驗與評量—成就測驗與教學評量。台北,心理。
王寶墉(民84)。現代測驗理論。台北,心理。
余民寧(民80)。試題反應理論的介紹-測驗理論的發展趨勢(一)。研習資訊。第8卷,第6期,13-18頁。
譚克平(2009)。TIMSS國際教育評比研究簡介。研習資訊。第26卷,第6期,11-20頁。
劉秋木(民85)。國小數學科教學研究。台北,五南圖書出版公司。
劉祥通、洪繼賢(2004)。一位小五學生解分數單位量等分割問題的表現。科學教育研究與發展季刊第35期,53-75頁。
徐文鈺(1996)。不同擬題教學策略對兒童分數概念、解題能力與擬題能力之影響。國立台灣師範大學教育心理與輔導研究所博士論文。未出版。
羅昭強(民98)。教育統計講義SPSS12.0版。未出版。
二 英文部分
Ronald K. Hambleton, H. Swaminathan & H. Jane Rogers(1991). Fundamentals of Item Response Theory Newbury Park, CA: Sage Publications.
Frank B. Baker(2001).The Basic of Item Response Theory Eric Clearinghouse in Assessment and Evaluation.
Dr. V. Natarajan(2009).Basic Principles of IRT And Application to Practical Testing & Assessment.
Carlo Magno(2009).Demonstrating the Difference between Classical Test Theory and Item Response Theory Using Derived Test Data.The International Journal of Educational and Psychological Assessment April 2009, Vol. 1, Issue 1, pp. 1-11.
Robert F. Boldt(1988).Latent Structure Analysis of theTest of English as a Foreign Language.Educational Testing Service Princeton, New Jerey 08541 RR-88-27.
Julie Alonzo, Daniel Anderson, Gerald Tindal(2009).IRT Analysis of General Outcome Measures in Grades 1-8.Behavioral Research and Teaching University of Oregon .175 Education.
Robert McKinley, Neal Kingston(1987).Exploring The use of IRT Equating for The GRE Subject Test in Mathematics.GRE Board Professional Report No. 86-8P. ETS Research Report 87-21.
Barbara R. Sadowski(1981).An Investigation of the Mastery of Rational Number Concepts and Skills by Middle-School Students.the Annual Meeting of the Southwest Educational Research Association.
George Brown, Robert J. Quinn(2006).Algebra Students' Difficulty with Fractions:An Error Analysis.Australian.Mathematics Teacher, v62 n4 p28-40 2006.
Riddle, Margaret & Rodzwell, Bette.(2000).Fractions: What happens between kindergarten and the army?Teaching Children Mathematics v7,n4 p202-208.