簡易檢索 / 詳目顯示

研究生: 朱文彬
Wen-Bing Chu
論文名稱: 含有機/無機粒子塗液於精密模具塗佈流動之分析
Analysis of suspensions with organic/inorganic particles on precision die coating flow
指導教授: 劉大佼
Ta-Jo Liu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 162
中文關鍵詞: 精密塗佈聚乙烯醇粒子淋幕式塗佈狹縫式塗佈
外文關鍵詞: precision coating, polyvinyl alcohol, particles, curtain coating, slot die coating
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 塗佈研究以往集中在對高分子溶液系統進行探討,而目前工業應用上則有極多塗液為懸浮液體,因此本研究選擇兩種具代表性的塗佈懸浮液,進行其塗佈行為之分析,其系統分別為(1)TiO2及SiO2粒子添加在聚乙烯醇(polyvinyl alcohol, PVA)溶液,此為噴墨燈箱片之簡化系統;(2) PMMA粒子添加在甘油/水溶液,此為面板關鍵零組件擴散片之簡化系統。本研究使用狹縫式塗佈(slot die coating)及淋幕式塗佈(curtain coating)為製程載具,這兩種塗佈方式皆屬於預調式塗佈技術,其最大特點在於可預先計量且在長時間操作下具有相當高的塗膜均勻性及穩定性。
    添加無機粒子到聚乙烯醇溶液中經實驗發現,添加粒子後懸浮液塗佈視窗較單純PVA溶液大,且隨著粒子濃度的增加有明顯變大的趨勢。主要原因是高分子與粒子間的強吸附導致黏度及表面張力增加,使得塗佈液珠上游彎月面更加穩定並延後缺陷發生的時機,因此使得塗佈視窗變大。雖然黏度及表面張力對塗佈液珠的穩定有不同之影響,但發現表面張力的效應遠大於黏度,且表面具有孔洞結構的粒子會較實心粒子有較大的表面張力及塗佈視窗。
    我們亦建立一套即時顯微觀測技術以觀察塗佈液珠形狀,發現在相同的塗佈操作條件下,含有粒子的懸浮液其上游動態接觸角較高分子溶液來的小,這個現象也顯示出塗佈液珠的上游彎月面會較穩定,因此得到較大塗佈視窗。同時我們也利用理論工具(Flow 3D)進行塗佈液珠流場之行為研究,可以了解流場內速度與壓力之分佈。
    具TiO2及SiO2之懸浮液系統,pH值改變將影響懸浮液體的表面張力及PVA的吸附量,在本研究中我們發現TiO2系統的塗佈視窗會隨著pH值增加而變大,而SiO2系統的塗佈視窗會隨著pH值增加而變小,這是因為TiO2懸浮液在鹼性環境下有較多的PVA分子被吸附在TiO2表面,且此時的表面張力略微增加;相反的,當SiO2懸浮液從鹼性到酸性的環境下會有較多之PVA高分子吸附在粒子表面且表面張力較大,當粒子表面吸附較多的PVA分子會使得粒子間的立體障礙排斥力增強,此時內聚力的增加將可承受較大的剪切應力,因此有助於塗佈液珠的穩定,而使得最大塗佈速度時的缺陷延後發生。
    此外,PVA的分子量及鹼化度也會影響塗佈行為,研究結果發現鹼化度愈高的懸浮液系統擁有較大的表面張力及吸附量,有助於穩定塗佈液珠行為,因而得到更大的塗佈視窗。對於高分子量的PVA懸浮液,其無因次濕膜厚度隨著capillary number有先增加而後趨於定值的趨勢,然而對於低分子量的PVA懸浮液其無因次濕膜厚度與capillary number關係不大,反而是此時有較高的Reynolds number,代表慣性力已取代表面張力主導整個塗佈液珠的穩定行為。
    本研究亦分析含不同粒徑PMMA粒子之甘油/水溶液,在淋幕式塗佈時空氣滲入速度延後發生與流體黏度、邊桿高度及粒子濃度間的關係。結果發現,不論是單純的甘油/水溶液或是添加PMMA粒子於甘油/水溶液後的懸浮液,其最大塗佈速度皆隨黏度的增加而下降,這是因為低黏度的流體在動態潤濕線處可承受較高的速度變化才會破壞液膜的穩定,因此可得到較高的塗佈速度。隨著邊桿高度的增加,液膜從高處落下產生的慣性力有助於延後空氣的滲入時機而得到較高的塗佈速度。當粒子數量密度增加時,亦有助於阻擋空氣破壞動態潤濕線,因此可有效延後空氣滲入,而得到更高的穩定塗佈速度。


    In the past, most researchers have focused mainly on polymer solutions as coating fluids. Very few studies have examined the coating behavior of suspensions. In this study, two simplified systems that mimic the real industrial applications were chosen to analyze the coating flow. One is related to the light diffusing backlit film which uses TiO2 and/or SiO2 particles dispersed in polyvinyl alcohol(PVA) solutions and the other one is the diffuser film in flat display panels where PMMA particles are dispersed in glycerol solutions. Two methods, slot die and curtain coating were employed in the investigation. The main advantages of these two methods are their ability to pre-determine the product film thickness and to produce uniform film under prolonged operation.

    It was found that the stable coating windows were enlarged with the addition of particles in the (PVA) coating solutions, and the windows were increased with solid concentration. This is due to the strong interactions between polymer and particles, resulting in a higher viscosity and surface tension. The upstream coating bead is more stable with the addition of particles and the maximum coating speed is extended to a higher value, hence the coating window becomes larger. Although both viscosity and surface tension appear to contribute to the stability of coating flow, the effect of surface tension is more signifactant. Surface tension of a suspension consists of porous particles is higher than the one containing hard solid particles. Consequently, the coating window obtained with the former is substantially larger than the latter.

    Flow visualization revealed that under the same operating conditions, the upstream dynamic contact angle for the suspension was smaller than that for the aqueous polymer solution. This observation could be related to the stability of the upstream coating bead, and hence the coating window. The experimental flow fields were verified numerically with the aid of a numerical simulation package Flow 3D.

    Changing the pH of the suspension affects both the surface tension and the amount of PVA adsorbed on the particle surface. In the present study, the size of the coating window increases as pH increases for the TiO2 suspensions, but decreases for the SiO2 suspensions. This is because a greater number of PVA macromolecules are adsorbed on the TiO2 surfaces at basic environment, and the surface tension is slightly increased. The opposite effect was observed for the SiO2 suspension. Larger amount of PVA macromolecules are adsorbed on the SiO2 surfaces when pH is changed from basic to acidic, resulting in a higher surface tension for the SiO2 suspension at low pH. The larger the amount of PVA adsorbed, the stronger are the steric forces surrounding the particles. These forces are able to withstand higher stress fields in slot die coating, thus delaying the occurrence of air entrainment, resulting in an increase in the maximum coating velocity.

    In addition, the degree of hydrolysis and the molecular weight of PVA also affect the coating behavior. Higher degree of hydrolysis results in a larger surface tension and more adsorption of polymer onto the particle surfaces. As a result, the coating bead becomes more stable and the size of the coating window increases. The dimensionless film thickness increases with capillary number Ca which is the ratio of viscous force over surface tension and approaches a constant value for the high molecular weight PVA suspensions, but is only a weak function of Ca for the low molecular weight, low viscosity suspensions. At high Reynolds number Re, which is the ratio of fluid inertial to viscous force, the stability of the coating bead is controlled primarily by fluid inertia instead of surface tension.

    The effect of adding PMMA particles in glycerol/water solutions on curtain coating was also investigated. The aim is to study the relationship between the maximum coating speed with the coating solution viscosity, the height of the edge guide and the PMMA particle concentration in the suspension. It was found that the maximum coating speed decreased with increasing viscosity, as a result of either pure glycerol/water solution or by dispersing PMMA particles in the coating solution to form a suspension. This was due to the fact that coating solution with lower viscosity could sustain a higher speed at the dynamic wetting line. Consequently, a higher coating speed could be achieved for low viscosity fluids. Also, stable flow can be maintained at a much higher inertial force by increasing the curtain height, resulting in a postponement of the onset of air entrainment. Another positive effect is to increase the particle concentration in the coating solution. It appeared that higher particle number density could resist the air film from destroying the dynamic contact line, and hence, postponing the coating defects to occur at a higher coating speed.

    摘 要 I Abstract IV 目錄 VII 附表說明 X 附圖說明 XI 第一章、緒論 1 1-1.背景說明 1 1-2.精密塗佈技術 2 1-3.膠體懸浮液 8 1-4.研究方向 9 第二章、文獻回顧 20 2-1.狹縫式塗佈技術 20 2-2.淋幕式塗佈技術 25 2-3.膠體懸浮液之相關研究 28 第三章、實驗方法與步驟 38 3-1.材料與儀器設備 38 3-1-1.材料 38 3-1-2.儀器設備 40 3-2.溶液之配置及步驟 46 3-2-1.實驗流體的配置 46 3-2-2.固體PVA配置方法 47 3-3.實驗儀器量測方法 47 3-3-1.流變性質量測 47 3-3-2.表面張力量測 48 3-3-3.列塔電位(zeta potential)量測 48 3-3-4.比表面面積量測 48 3-3-5. PVA等溫吸附曲線的測定 49 3-3-6.塗佈液珠觀測技術 49 3-4.實驗機構之建立 50 第四章、塗佈視窗研究方法 62 4-1.預調式塗佈研究 62 4-2.實驗步驟 63 4-3.塗佈視窗測量方法之建立 63 4-4.實驗參數之定義 66 第五章、無機粒子的添加濃度、顆粒大小及表面結構對塗佈視窗之影響 68 5-1.添加不同濃度無機粒子到PVA溶液中的影響 68 5-2.添加表面結構不同的無機粒子到PVA溶液中的影響 72 5-3.塗佈液珠行為之實驗結果與理論工具驗證 75 5-4.小結 80 第六章、添加無機粒子在PVA中酸鹼度及不同PVA種類的影響 98 6-1. pH值的影響(TiO2/PVA高分子水溶液) 98 6-2. pH值的影響(SiO2/PVA高分子水溶液) 101 6-3. PVA分子量與鹼化度的影響 103 6-4.小結 106 第七章、添加PMMA粒子於甘油/水溶液中之塗佈視窗研究 122 7-1.甘油/水溶液 123 7-1-1.黏度的效應 123 7-1-2.邊桿高度的效應 124 7-2.添加PMMA粒子於甘油/水溶液 125 7-2-1.黏度的效應 125 7-2-2.粒子添加濃度與粒徑大小的效應 126 7-2-3.邊桿高度的效應 128 7-3.小結 129 第八章、結論與未來展望 146 附錄A、符號說明 150 附錄B、參考文獻 152 附錄C、個人資料 161

    [1] Beguin, A.E., “Method of Coating Strip Material”, US Patent 2,681,694 (1954).
    [2] Blake, T.D., Clarke, A. and Ruschak, K.J., “Hydrodynamic Assist of Dynamic Wetting”, AIChE J., 40, 229-242 (1994).
    [3] Blake, T.D., Dobson, R.A. and Ruschak, K.J., “Wetting at High Capillay Numbers”, J. Colloid Interface Sci., 279, 198-205 (2004).
    [4] Blake, T.D. and Ruschak, K.J., “A Maximum Speed of Wetting”, Nature, 282, 489-491 (1979).
    [5] Blake, T. D., and Ruschak, K.J., “Wetting:Static and Dynamic Contact Lines”, in Liquid Film Coating;Kistler, S. F. and Schweizer, P. M., eds., Chapmans Hall, London, 1997. pp 63-98.
    [6] Boisvert, J.P., Persello, J. and Guyard, A., “Influence of the Surface Chemistry on the Structural and Mechanical Properties of Silica-Polymer Composites”, Journal of Polymer Science: Part B: Polymer Physics, 41, 3127-3138 (2003).
    [7] Brown, D.R., “A Study of the Behaviour of a Thin Sheet of Moving Liquid”, J. Fluid Mech., 10, 297-303 (1961).
    [8] Buonopane, R.A., Gutoff, E.B. and Rimore, M.M.T., “Effect of. Plunging Tape Surface Properties on Air-Entrainment Velocity”, AIChE J., 32, 682-683 (1986).
    [9] Burley, R. and Jolly, R.P.S., “Entrainment of Air Into Liquids by a High Speed Continuous Solid Surface”, Chem. Eng. Sci., 39, 1357-1372 (1984).
    [10] Burley, R. and Kennedy, B.S., “An Experimental Study of Air Entrainment at a Solid/Liquid/Gas Interface”, Chem. Eng. Sci., 31, 901-911 (1976).
    [11] Carvalho, M.S. and Kheshgi, H.S., “Low-Flow Limit in Slot Coating: Theory and Experiments”, AIChE J., 46, 1907-1917 (2000).
    [12] Chang, S.H., Gupta, R.K. and Ryan, M.E., “Effect of the Adsorption of Polyvinyl Alcohol on the Rheology and Stability of Clay Suspensions”, J. Rheol., 36(2), 273-287 (1992).
    [13] Chang, Y.R., Chang, H.M., Lin, C.F., Liu, T.J. and Wu, P.Y., “Three Minimum Wet Thickness Regions of Slot Die Coating”, J. Colloid Interface Sci., 308, 222-230 (2007).
    [14] Chibowski, S., “Adsorption Equilibria in the System TiO2-Aqueous Solution Containing Polyvinyl Alcohol”, Materials Chemistry and Physics, 14, 471-479 (1986).
    [15] Chibowski, S., “Dependence of the Adsorption Behavior of Polyvinyl Alcohol at the Polystyrene Latex-Solution Interface on the Molecular Weight”, J. Colloid Interface Sci., 134, 174-180 (1990).
    [16] Chibowski, S., “Investigation of the Mechanism of Polymer Adsorption on a Metal Oxide/Water Solution Interface”, Adsorption Sci. Technol. 14, 179-188 (1996).
    [17] Chibowski, S. and Paszkiewicz M., “Studies of the Influence of Acetate Groups from Polyvinyl Alcohol on Adsorption and Electrochemical Properties of the TiO2-Polymer Solution Interface”, J. Dispersion Science and Technology, 22(2&3), 281-289 (2001).
    [18] Chibowski, S. and Szczypa, J., “Studies on the Adsorption of Polyvinyl Alcohol on TiO2 Surfaces”, J. Colloid Interface Sci., 100, 571-572 (1984).
    [19] Chu, W.B., Yang, J.W., Liu, T.J., Tiu, C. and Guo, J., “The Effects of pH, Molecular Weight and Degree of Hydrolysis of Poly(Vinyl Alcohol) on Slot Die Coating of PVA Suspensions of TiO2 and SiO2”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302, 1-10 (2007).
    [20] Chu, W.B., Yang, J.W., Wang, Y.C., Liu, T.J., Tiu, C. and Guo, J., “The Effect of Inorganic Particles on Slot Die Coating of Poly(Vinyl Alcohol) Solutions”, J. Colloid Interface Sci., 297, 215-225 (2006).
    [21] Clarke, A., “Coating on a Rough Surface”, AIChE J., 48, 2149-2156 (2002).
    [22] Clarke, N.S., “Two-Dimensional Flow under Gravity in a Jet of Viscous Liquid”, J. Fluid Mech., 31, 481-500 (1968).
    [23] Cohen, E.D. and Gutoff, E.B., Modern Coating and Drying Technology, VCH Publishers, New York, 1992.
    [24] Cohen, E.D. and Gutoff, E.B., Coating and Drying Defects, Wiley Interscience, New York, 1995.
    [25] Croot, R.A., Goodall, A.R. and Lubetkin, S.D., “Adsorption Properties of Vinyl Alcohol/Vinyl Acetate Copolymers”, Colloids and Surfaces, 49, 351-362 (1990).
    [26] Deng, Q., Hahn, J.R., Stasser, J., Preston, J.D. and Burns, G.T., “Reinforcement of Silicone Elastomers with Treated Silica Xerogels:Silica-Silicone IPNs”, Rubber Chem. Technol., 73, 647-665 (2000).
    [27] Deryagin, B.V. and Levi, S.M., Film Coating Theory, The Focal Press, London, 1964.
    [28] Doroszkowski, A. and Lambourne, R., “A Viscometric Technique for Determining the Layer Thickness of Polymer Adsorbed on Titanium Dioxide”, J. Colloid Interface Sci., 26, 214-221 (1968).
    [29] Einstein, A., “A New Determination of the Molecular Dimensions”, Ann. Physik., 19, 289-306 (1906).
    [30] Erdtmann, D., Romano, C. E. and Martin, T. W., “Inkjet Images on PVA Overcoated with Hardener Solution”, US Patent 6,161,929 (2000).
    [31] Finnicum, D.S., Weinstein, S.J. and Ruschak, K.J., “The Effect of Applied Pressure on the Shape of a Two-Dimensional Liquid Curtain Falling under the Influence of Gravity”, J. Fluid Mech., 255, 647-665 (1993).
    [32] Fleer, G.J. and Lyklema, J., Adsorption from Solution at the Solid/Liquid Interface, Academic Press, Orlando, FL, 1983. pp 153-220.
    [33] Fleer, G.J., Cohen Stuart, M.A., Scheutjens, J.M.H.M., Cosgrove, T. and Vincent, B., Polymers at Interfaces, Chapman & Hall, London, 1993.
    [34] Foissy, A and Persello, J., Surface Group Ionization on Silicas, in:A.P. Legrand (Ed.), The Surface Properties of Silicas, Wiley, New York, 1998. pp 365-414.
    [35] Georgiou, G.C., Papanastasiou, T.C. and Wilkes, J.O., “Laminar Newtonian Jets at High Reynolds Number and High Surface Tension”, AIChE J., 34, 1559-1562 (1988).
    [36] Gibson, F.W., Davis, R.M. and Riffle, J.S., “Adsorption of Water-Soluble Polymers on Submicron Oxide Particles”, Polym. Preprints, 38, 642-643 (1997).
    [37] Gilbert, N. and Eckel, A., “Analysis of Extrusion Coating in the Presence of External Forces”, AIChE Spring National Meeting, New Orleans, 1992.
    [38] Greiller, J.F., “Method of Making Photographic Elements”, USP 3,236,374 (1972).
    [39] Gu, J. and Lauderback, S.K., “Recording Material with an Extrusion Coated PVA Layer”, US Patent 6,403,202 (2002).
    [40] Guo, J., Tiu, C., Uhlherr, P.H.T. and Fang, T.N., “Yielding Behaviour of Organically Treated Anatase TiO2 Suspension”, Korea-Australia Rheol. J., 15, 9-17 (2003).
    [41] Gutoff, E.B. and Kendrick, C.E., “Low Flow Limits of Coatability on a Slide Coater”, AIChE J., 33, 141-145 (1987).
    [42] Gutoff, E.B. and Kendrick, C.E., “Dynamic Contact Angles”, AIChE J., 28, 459-466 (1982).
    [43] Heath, D. and Tadros, Th.F., “Influence of pH, Electrolyte, and Polyvinyl Alcohol Addition on the Rheological Behavior of Aqueous Silica (Aerosil) Dispersions”, J. Colloid Interface Sci., 93, 320-328 (1983).
    [44] Hens, J. and Boiy, L., “Operation of the Bead of a Pre-metered Coating Device”, Chem. Eng. Sci., 41, 1827-1832 (1986).
    [45] Hiemenz, P.C., Principles of Colloid and Surface Chemistry, Basel Marcel Dekker, New York, 1986.
    [46] Higgins, B.G. and Scriven, L.E., “Capillary Pressure and Viscous Pressure Drop Set Bounds on Coating Bead Operability”, Chem. Eng. Sci., 35, 673-682 (1980).
    [47] Hiroaki, M., “Recent Trends in Functional Coatings in Japan”, Paper Film & Foil CONVERTECH PACIFIC, 14-18 (1997).
    [48] Hughes, D.J., “Method for Simultaneously Applying a Plurality of Coated Layers by Forming a Stable Multilayer Free-Falling Vertical Curtain”, US Patent 3,508,947 (1970).
    [49] Johnson, G.A. and Lewis, K.E., “Dipersibility of Carbon Black by Polyvinyl Alcohol Solutions”, Br. Polym. J., 1, 266-272 (1969).
    [50] Jones, D.A.R., Leary B. and Boger, D.V., “The Rheology of a Concentrated Colloidal Suspension of Hard Spheres”, J. Colloid Interface Sci., 147, 479-495 (1991).
    [51] Katoh, E. and Tsubaki, Y., “Ink jet recording sheet”, US Patent 6,699,536 (2004).
    [52] Killmann, E., Maier, H. and Baker, J.A., “Hydrodynamic Layer Thickness of Various Adsorbed Polymers on Precipitated Silica and Polystyrene Latex”, Colloids and Surfaces, 31, 51-71 (1987).
    [53] Kistler, S.F., The Fluid Mechanics of Curtain Coating and Related Viscous Free Surface Flows with Contact Lines, Ph.D. Thesis, University of Minnesota, Minneapolis, 1984.
    [54] Kistler, S.F. and Schweizer, P.M.(Eds.), Liquid Film Coating, Chapman & Hall, London, 1997.
    [55] Kistler, S.F. and Scriven, L.E., “The Teapot Effect:Sheet-Forming Flows with Deflection, Wetting and Hysteresis”, J. Fluid Mech., 263, 19-62 (1994).
    [56] Koopal, L.K., Hlady, V. and Lyklema, J., “Electrophoretic Study of Polymer Adsorption:Dextran, Polyethylene Oxide and Polyvinyl Alcohol on Silver Iodide”, J. Colloid Interface Sci., 121, 49-62 (1988).
    [57] Lee, K.Y., Liu, L.D. and Liu, T.J., “Minimum Wet Thickness in Extrusion Slot Coating”, Chem. Eng. Sci., 47, 1703-1713 (1992).
    [58] Liang, G.G. and Hawkett, B.S., “The Determination of the Isoelectric Point from Measurements of Dispersion Viscosity as a Function of pH”, J. Dispersion Science and Technology, 26, 469-472 (2005).
    [59] Lin, S.P., “Stability of a Viscous Liquid Curtain”, J. Fluid Mech., 104, 111-118 (1981).
    [60] Lin, S.P. and Roberts, G., “Waves in a Viscous Liquid Curtain”, J. Fluid Mech., 112, 443-458 (1981).
    [61] Lubar, M.J., “Ink jet recording medium”, US Patent 5,888,629, 1999.
    [62] Macosko, C.W., Rheology:Principles Measurements and Applications, Wiley-VCH Publishers, New York, 1994.
    [63] Mooney, M., “The Viscosity of a Concentrated Suspension of Spherical Particles”, J. Colloid Sci., 6, 162-170 (1951).
    [64] M’Pandou, A. and Siffert, B., “Polyethyleneglycol Adsorption at the TiO2-H2O Interface: Distortion of Ionic Structure and Shear Plane Position”, Colloid. Surf., 24, 159-172 (1987).
    [65] Napper, D.H., Polymeric Stabilization of Colloidal Dispersions, Academic Press, London, 1983.
    [66] Ning, C.Y., Tsai, C.C.and Liu,T.J., “The Effect of Polymer Additives on Extrusion Slot Coating”, Chem. Eng. Sci., 51, 3289-3297 (1996).
    [67] Osman, M.A., Atallah, A., Muller, M. and Suter, U.W., “Reinforcement of Poly(dimethylsiloxane) Networks by Mica Flakes”, Polymer, 42, 6545-6556 (2001).
    [68] Osman, M.A., Atallah, A., Kahr, G. and Suter, U.W., “Reinforcement of Poly(dimethylsiloxane) Networks by Montmorillonite Platelets”, J. Appl. Polym. Sci., 83, 2175-2183 (2002).
    [69] Otsubo, Y., “Effect of Polymer on the Rheological Behavior of Silica Suspensions”, J. Colloid Interface Sci., 112, 380-386 (1986).
    [70] Pattanayek, S.K. and Juvekar, V.A., “Prediction of Adsorption of Nonionic Polymers from Aqueous Solutions to Solid Surfaces”, Macromolecules, 35, 9574-9585 (2002).
    [71] Pulkrabek, W.W. and Waberk, R.M., “Single-Coat and Multi-Coat,Single-Pass Curtain Coating”, AIChE Spring National Meeting, 1988.
    [72] Rachas, I., Tadros, Th.F. and Taylor, P., “The Displacement of Adsorbed polymer from Silica Surfaces by the Addition of a Nonionic Surfactant”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 161, 307-319 (2000).
    [73] Romero, O.J., Suszynski, W.J., Scriven, L.E. and Carvalho, M.S., “Low-Flow Limit in Slot Coating of Dilute Solutions of High Molecular Weight Polymer”, J. Non-Newtonian Fluid Mech., 118, 137-156 (2004).
    [74] Ruschak, K.J., “Limiting Flow in a Pre-metered Coating Device”, Chem. Eng. Sci., 31, 1057-1060 (1976).
    [75] Russel, T.A., Wilson R.M. and Sanford C.R., “Multiple Coating Apparatus”, US Patent 2, 761,417 (1956).
    [76] Russel, T.A., “Multiple Coating Apparatus”, US Patent 2,761,418 (1956).
    [77] Russel, W.B., “Review of the Role of Colloidal Forces in the Rheology of Suspensions”, J. Rheol., 24, 287-317 (1980).
    [78] Sartor, L., Slot Coating:Fluid Mechanics and Die Design, Ph.D. Thesis, University of Minnesota, Minneapolis, 1990.
    [79] Sato, T. and Ruch, R., Stabilization of Colloid Dispersions by Polymer Adsorption, Marcel Dekker, New York, 1980. pp 1-36.
    [80] Savarmand, S., Carreau, P.J., Bertrand, F., Vidal, D.J.-E. and Moan, M., “Rheological Properties of Concentrated Aqueous Silica Suspensions:Effects of pH and Ions Content”, J. Rheol., 47(5), 1133-1149 (2003).
    [81] Schade, R.L. and Schliesman, L.J., “Ink Jet Recording Media”, US Patent 6,746,713 (2004).
    [82] Schweizer, P.M., “Visualization of coating flows”, J. Fluid Mech., 193, 285-302 (1988).
    [83] Shaw, D.J., Introduction to Colloid and Surface Chemistry, Butterworth-Heinemann, Oxford, 1992.
    [84] Shima, R., “A Treatment of the Viscosity of Concentrated Suspensions”, Journal of Applied Physics, 23, 1020-1024 (1952).
    [85] Simpkins, P.G. and Kuck, V.J., “On Air Entrainment in Coatins”, J. Colloid Interface Sci., 263, 562-571 (2003).
    [86] Son, W.K., Youk, J.H., Lee, T.S. and Park, W.H., “Effect of pH on Electrospinning of Poly(Vinyl Alcohol)”, Materials Letters, 59, 1571-1575 (2005).
    [87] Spiers, R.P., Subbaraman, C.V. and Wilkinson, W.L., “Free Coating of Non-Newtonian Liquids onto a Vertical Surface”, Chem. Eng. Sci., 30, 379-395 (1975).
    [88] Sullivan, T.M. and Middleman, S., “Film Thickness in Blade Coating of Viscous and Viscoelastic Liquids”, J. Non-Newtonian Fluid Mech., 21, 13-38 (1986).
    [89] Tadros, Th.F., in:Tadros, Th.F. (Ed.), The Effect of Polymers on Dispersion Properties, Academic Press, London, 1982. pp 1-38.
    [90] Tadros, Th.F., “Adsorption of Polyvinyl Alcohol on Silica at Various pH Values and Its Effect on the Flocculation of the Dispersion”, J. Colloid Interface Sci., 64, 36- 47 (1978).
    [91] Tadros, Th.F. and Vincent, B., “The Influence of Electrolytes on the Adsorption of Poly(vinyl alcohol) on Polystyrene Particles and on the Stability of the Polymer-Coated Particles”, J. Colloid Interface Sci., 72, 505-514 (1979).
    [92] Tallmadge, J.A., Weinberger,C.B. and Faust, H.L., “Bead Coating Instability:A Comparison of Speed Limit Data with Theory”, AIChE J., 25, 1056-1072 (1979).
    [93] Vincent, B., “The Effect of Adsorbed Polymers on Dispersion Stability”, Advanced in Colloid and Interface Science, 4, 193-277 (1974).
    [94] Wang, T.K. and Audebert, R., “Adsorption of Cationic Copolymers of Acrylamide at the Silica-Water Interface: Hydrodynamic Layer Thickness Measurements”, J. Colloid and Interface Sci., 121, 32-41 (1988).
    [95] Yamamura, M., Matsunaga, A., Mawatari, Y., Adachi, K. and Kage, H., “Particle-assisted Dynamic Wetting in a Suspension Liquid Jet Impinged onto a Moving Solid at Different Flow Rates”, Chem. Eng. Sci., 61, 5421-5426 (2006).
    [96] Yamamura, M., Miura, H. and Kage, H., “Postponed Air Entrainment in Dilute Suspension Coatings”, AIChE J., 51, 2171-2177 (2005).
    [97] Yamamura, M., Suematsu, S., Kajiwara, T. and Adachi, K., “ExperimentalInvestigation of Air Entrainment in a Vertical Liquid Jet Flowing Down onto a Rotating Roll”, Chem. Eng. Sci., 55, 931-942 (2000).
    [98] Yang, C.K., Wong, D.S.H. and Liu, T.J., “The Effects of Polymer Additives on the Operating Windows of Slot Coating”, Polym. Eng. Sci., 44, 1970-1976 (2004).
    [99] Yang, H.G., Li, C.Z., Gu, H.C. and Fang, T.N., “Rheological Behavior of Titanium Dioxide Suspensions”, J. Colloid Interface Sci., 236, 96-103 (2001).
    [100]李國陽, 擠壓式塗佈工程之研究, 國立清華大學化學工程研究所博士論文, 1990.
    [101]劉大佼, 高分子加工原理與應用, 揚智出版社, 台北, 1997.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE