簡易檢索 / 詳目顯示

研究生: 安泰邦
An, Tai-Pang
論文名稱: 應用大氣電漿於滾筒式奈米壓印模具之抗沾黏特性研究
An investigation into Anti-adhesion Characteristics of the Nanoimprinting Roller Mold Using APPCVD
指導教授: 宋震國
Sung, Cheng-Kuo
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 104
中文關鍵詞: 奈米壓印沾黏電漿力量曲線捲對捲
外文關鍵詞: nanoimprint, adhesion, plasma, force curve, roll to roll
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文之研究目的是解決滾筒式奈米壓印的模具沾黏問題,考慮到大型滾筒模具的直接加工可行性,本研究運用大氣電漿化學氣相沈積法(APPCVD),於奈米壓印模具表面製作抗沾黏層。相較於氣相自組裝單分子層法,利用大氣電漿可以在多種的材料表面製作抗沾黏層,而且製程快速,不需要真空設備。
    利用奈米壓印與滾筒式壓印之模具採用的材料:矽、鎳、鎳-磷來作為表面沾黏特性的研究對象。實驗發現試片在經過電漿處理後表面能皆會降低,表面粗糙度則會上升,其中後者是不利因素。因此透過實驗歸納出最佳化的製程參數,使表面水滴接觸角高達121o,表面能低於13.44 mN/m,表面粗糙度低於1.1 nm。抗沾黏層透過化學分析電子儀分析表面化學成分,顯示出含有造成低表面能的CFx。經過抗沾黏處理的試片,再分別利用原子力顯微鏡進行力量曲線量測,以及微拉伸試驗機進行與光阻的黏滯力量測。結果原子力顯微鏡探針與試片之間的黏滯力低於14.64 nN,與利用黏滯理論帶入量測得到的表面能計算之黏滯力趨勢吻合。
    本研究之結果可以降低壓印模具的黏滯力,經過抗沾黏處理的模具在壓印之後利用電子掃描顯微鏡觀察發現沾黏情形已經改善。


    In this study we use the Atmosphere Pressure Plasma Jet(APPJ) system to form an anti-adhesion coating on the imprinting mold, which could be flat or roller typed. It is fast, vacuum free and low temperature comparing to Self-assembled Monolayer by vapor phase deposition.
    Samples of Si wafer, Ni film (by e-gun vapor deposition) and Ni-P film (by electroless plating) were prepared. These materials were desirable for the robust mold of imprinting. After the treatment on the samples, the surface energy was decreased and, however, roughness raised. Using an optimized process parameter, the water contact angle was 121o, surface lower than 13mN/m and roughness lower than 1.1 nm. Also, an ESCA was applied to analyse the chemical compose of the coating, the CFx species causing a low surface energy were founded of which. Finally the adhesion force was measured by the AFM force curve and it was lower than 14.64 nN after treatment. Then the adhesion results were compared to the prediction by adhesion theory.
    We have used the APPJ system to form an anti-adhesive coating on Si, Ni and Ni-P in just few minutes. The Si, Ni and Ni-P had achieved the nearly same contact angles about 120o and low adhesion force after the treatment. A thin, uniform and roughness controlled anti-adhesion coating with low surface energy was being coated on the structured mold with nano-scale patterns, thus the sticking was avoided.

    摘要 II ABSTRACT III 致謝 IV 目錄 V 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻回顧 3 1.3.1 奈米壓印技術 3 1.3.2 摩擦與黏滯相關實驗 7 1.3.3 摩擦與黏滯相關模擬 11 1.4 研究目標 13 1.5本文內容 14 第二章 理論 15 2.1 古典黏滯理論 15 2.1.1 Hertzian 理論 16 2.1.2 Johnson-Kendall-Roberts-Sperling 理論 17 2.1.3 Derjaguin-Muller-Toporov 理論 18 2.1.4 Burnham-Colton-Pollock 理論 20 2.1.5 M-D理論 21 2.1.6 五種理論比較 23 2-2 介面黏著理論 26 2-3 表面能 27 2.4 自組裝單分子層 30 2.5 電漿理論 31 2.5.1 電漿的產生 32 2.5.2 大氣電漿 37 第三章 實驗研究 42 3.1 實驗架構 43 3.2.1 試片製作 46 3.2.2 矽模具製作 46 3.2.3 鎳模具製作 47 3.3 抗沾黏層製作 49 3.3.1 大氣電漿化學氣相沈積 49 3.3.2 自組裝單分子的抗沾黏層 51 3.3.3 表面能量測 52 3.3.4 表面粗糙度量測 53 3.3.5 黏滯力量測 54 3.3.6 化學分析電子儀 56 3.3.7 掃描電子顯微鏡 58 3.4 UV奈米壓印 58 3.4.1 壓印基材 58 3.4.2 壓印光阻 60 3.4.3 壓印製程 61 3.5 脫模力量測 63 第四章 實驗結果與討論 67 4.1 模具製作 67 4.1.1 矽模具 67 4.1.2 鎳模具 68 4.2 表面改質 69 4.3 抗沾黏層沈積 71 4.3.1固定處理次數改變噴嘴距離 71 4.3.2固定噴嘴距離改變處理次數 76 4.3.3 ESCA表面化學分析 81 4.4 UV奈米壓印 90 4.4.1 使用沒有抗沾黏處理的模具 90 4.4.2 抗沾黏處理的模具 92 第五章 結論與未來工作 95 5.1 結論 95 5.2 未來工作 97 5.2.1 大氣電漿製程 97 5.2.2 脫模力量測 98 5.2.3 滾筒式奈米壓印 98

    [1] Gary Stix, “Shrinking Circuits with Water,” Scientific American, pp.54, 2005
    [2] G. E. Moore, “Cramming more components onto integrated circuits, ” Electronics, Vol. 38, No. 8, pp. 114-117, 1965
    [3] “10 Emerging Technologies That Will Change the World, ” http://www.technologyreview.com/
    [4] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, “Imprint of Sub-25 nm Vias and Trenches in Polymers,” Applied Physics Letters, Vol. 67, No. 20, p. 3114–3116, 1995
    [5] Chou S.Y. , Krauss, P.R. , Wei Zhang, Lingjie Guo and Lei Zhuang, “Sub-10 nm imprint lithography and applications, ” Journal of Vacuum Science & Technology B, Vol. 15, No. 6, p 2897-904, 1997
    [6] M.Colburn, S. Johnson, M. Stewart, S. Damle, T. C. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekerdt, and C. G. Willson, “Step and flash imprint lithography: a new approach to high-resolution patterning, ” Proc. SPIE 3676,pp. 379–389., 1999
    [7] Younan Xia and George M. Whitesides, “Soft Lithography,” Annu. Rev. Mater. Sci., Vol. 28, pp.153–84, 1998
    [8] Jan Haisma, Martin Verheijen, Kees van den Heuvel, and Jan van den Berg, “Mold-assisted nanolithography: A process for reliable pattern replication,” J. Vac. Sci. Technol. B Vol. 14, No. 6, pp. 4124-4128, 1996
    [9] S. Y. Chou, C. Keimel and J. Gu, 2002, “Ultrafast and direct imprint of nanostructures in silicon,” Nature, Vol. 417, No. 6891, pp. 835-837.
    [10] Seh-Won Ahn, Ki-Dong Lee, Jin-Sung Kim, Sang Hoon Kim, Sarng H. Lee, Joo-Do Park, and Phil-Won Yoon, “Fabrication of Subwavelength Aluminum Wire Grating Using Nanoimprint Lithography and Reactive Ion Etching,” Microelectronic Engineering, Vol. 78–79, pp. 314–318, 2005
    [11] C.W.Hsieh, H. Y. Hsiung, Y. T. Lu, C. K. Sung and W. H. Wang, “Fabrication of subwavelength metallic structures by using metal direct imprinting process,” Journal of Physics D: Applied Physics, Vol. 40, pp. 3440-3447, 2007
    [12] H. Tan, A. Gilbertson and S. Y. Chou, “Roller nanoimprint lithography”, Journal of Vacuum Science and Technology B, Vol. 16, No. 6, pp. 3926-3928, 1998
    [13] Se Hyun Ahn and L. Jay Guo, “High-Speed Roll-to-Roll Nanoimprint Lithography on Flexible Plastic Substrates”, Vol. 20, pp.2044–2049, 2008
    [14] Eui-Sung Yoon, Seung Ho Yang, Hung-Gu Han, Hosung Kong,” An experimental study on the adhesion at a nano-contact, ” Wear, Vol. 254, pp. 974-980, 2003
    [15] M P Manoharan and M A Haque, Role of adhesion in shear strength of nanowire–substrate interfaces, J. Phys. D: Appl. Phys., Vol. 42, 2009
    [16] Jayakumar Perumal, Tae Ho Yoon, Hwan Soo Jang, Jae Jong Lee and Dong Pyo Kim, Adhesion force measurement between the stamp and the resin in ultraviolet nanoimprint lithography—an investigative approach, Nanotechnology, Vol.20 , 2009
    [17] J.A. Harrison, C.T White, R.J Colton, and D.W. Brenner,Molecular-dynamics simulations of atomic-scale friction of diamond surfaces, Physical review B, Vol. 46, No. 15, 1992
    [18] J. Yang, K. Komvopoulos, A Molecular Dynamics Analysis of Surface Interference and Tip Shape and Size Effects on Atomic-Scale Friction, Journal of Tribology, Vol. 127,No. 513, 2005
    [19] Ji-Hoon Kang, Kwang-Seop Kim and Kyung-Woong Kim, Molecular dynamics study of pattern transfer in nanoimprint lithography, Tribology Letters, Vol. 25, No. 2, 2007.
    [20] 謝志瑋, 直接奈米壓印成型及摩擦效應之研究-分子動力學模擬及實驗, 國立清華大學博士論文, 2008
    [21] Yuhua Guo, Gang Liu, Yin Xiong and Yangchao Tian, Study of the demolding process—implications for thermal stress, adhesion and friction control, JOURNAL OF MICROMECHANICS AND MICROENGINEERING, Vol. 17,pp 9–19, 2007
    [22] Sunggook Park, Zhichao Song, Lance Brumfield, Alborz Amirsadeghi, Jaejong Lee, Demolding temperature in thermal nanoimprint lithography, Appl Phys A, Vol. 97, pp. 395–402, 2009
    [23] Mary B. Chan-Park, Y. C. Lam, P. Laulia, and S. C. Joshi, Simulation and Investigation of Factors Affecting High Aspect Ratio UV Embossing, American Chemical Society, Vol. 21, No. 5, pp 2000–2007, 2005
    [24] Se Hyun Ahna, L. Jay Guo , High-speed Roll-to-Roll Nanoimprint Lithography on Flexible Substrate and Mold-separation Analysis, Proc. of SPIE Vol. 7205, 2009
    [25] Kwang-Seop Kim, Jae-Hyun Kim, Hak-Joo Lee and Sang-Rok Lee, Tribology issues in nanoimprint lithography, Journal of Mechanical Science and Technology, Vol. 24, pp. 5, 2010
    [26] Jacob Israelachvili, intermolecular & surface force, 2nd Ed., Academic pressd, 1992
    [27] Q. Ouyang, K. Ishida, K. Okada, Investigation of micro-adhesion by atomic force microscopy, Applied Surface Science, Vol. 169-170, pp. 644-648, 2001
    [28] B.Bhushan, Handbook of Micro/Nano Tribology, 2nd Ed., CRCpress, Boca Raton, 1995
    [29] H.Hertz, “Über die Berührung fester elastischer Körper,” Journal für die reine und angewandte Mathematik, Vol. 92, pp. 156-171, 1881
    [30] K.L Johnson, K. Kendall, and Y.P Toporov, Surface energy and the contact of elastic body, Proc. Roy. Roy. Soc. London. A., Vol 324, pp. 301-313, 1971.
    [31] B.V. Derjaguin, V.M. Muller,and Y.P. Toporov, Effect of Contact Deformations on the adhesion of particles, J. Colloid interface sci., Vol. 53, pp.314-326, 1975.
    [32] K. L. Johnson and J. A. Greenwood, An Adhesion Map for the Contact of Elastic Spheres, Journla of colloid and interface science, Vol. 192, pp. 326–333, 1997
    [33] D. Maugis, Adhesion of spheres: The JKR-DMT Transition using a Dugdale Moel, J, Colloid interface sci, Vol 150,pp243-269, 1992.
    [34] Wake, W.C., Theories of Adhesion and Uses of Adhesives: A review, Polymer, Vol. 19, pp. 291-308, 1978
    [35] E. A. Clark, R. Yeske and H. K. Birnbaum, The effect of hydrogen on the surface energy of nickel, Metallurgical and Materials Transactions A, Vol. 11, pp. 1903, 1980
    [36] 楊智翔, 創新之雷射干涉微影系統與大面積奈米壓印模具之製作, 國立清華大學碩士論文, 2007
    [37] Yoshihiko HIRAI, Satoshi HARADA, Satoshi ISAKA, Michio KOBAYASHI and Yoshio TANAKA, Nano-Imprint Lithography Using Replicated Mold by Ni Electroforming, Jpn. J. Appl. Phys. Vol. 41,pp. 4186–4189, 2002
    [38] Yoshihiko Hirai, Satoshi Harada, Hisao Kikuta, and Yoshio Tanaka , Imprint lithography for curved cross-sectional structure using replicated Ni mold, J. Vac. Sci. Technol. B, Vol 20, 2002
    [39] 以常壓電將輔助化學氣象沈積製備疏水薄膜, 機械工業雜誌, 287期, pp. 157, 2007
    [40] D. Truffier-Boutry, M. Zelsmann, a J. De Girolamo, J. Boussey, C. Lombard, and B. Pépin-Donat, Chemical degradation of fluorinated antisticking treatments in UV nanoimprint lithography, APPLIED PHYSICS LETTERS, Vol. 94, 2009.
    [41] S. Park, J. Gobrecht, C. Padeste, H. Schift, K. Vogelsang, B. Schnyder (PSI),U. Pieles, S. Saxer, Improved Anti-adhesive coating for nanoimprint lithography, PSI scientific reports, 2003
    [42] Jacob Sagiv , Organized Monolayers by Adsorption, I . Formation and Structure of Oleophobic Mixed Monolayers on Solid Surfaces, Journal of the American Chemical Society, Vol 102, 1980.
    [43] H. V. Boenig, “Plasma Science and Technology”, Cornell University Press, NewYork, 1982
    [44] P. G. de Gennes, Wetting: statics and dynamics, Rev. Mod. Phys. Vol. 57, pp. 827–863, 1985
    [45] Takashi Nishino, Masashi Meguro, Katsuhiko Nakamae, Motonori Matsushita, and Yasukiyo Ueda, The Lowest Surface Free Energy Based on -CF3 Alignment, Langmuir, Vol. 15, pp. 4321–4323, 1999.
    [46] Gun-Young Jung, Zhiyong Li, Wei Wu, Yong Chen, Deirdre L. Olynick, Shih-Yuan Wang, William M. Tong, and R. Stanley Williams, Vapor-Phase Self-Assembled Monolayer for Improved Mold Release in Nanoimprint Lithography, Langmuir, Vol. 21, pp. 1158, 2005.
    [47] Kwang-Seop Kim, Jae-Hyun Kim, Hak-Joo Lee and Sang-Rok Lee, Tribology issues in nanoimprint lithography, Journal of Mechanical Science and Technology, Vol. 24, pp. 5, 2010
    [48] M. Keil, M. Beck, T. G. I. Ling, M. Graczyk, and L. Montelius, B. Heidari, Development and characterization of silane antisticking layers on nickelbased stamps designed for nanoimprint lithography, J. Vac. Sci. Technol. B, Vol. 23, No. 2, 2005
    [49] Tien-Li Chang, Jung-Chang Wangb, Chun-Chi Chen, Ya-Wei Lee d, and Ta-Hsin Chou, A non-fluorine mold release agent for Ni stamp in nanoimprint process, Microelectronic Engineering, Vol. 85, pp. 1608, 2008
    [50] Yoshihiko HIRAI, Satoshi HARADA, Satoshi ISAKA, Michio KOBAYASHI and Yoshio TANAKA, Nano-Imprint Lithography Using Replicated Mold by Ni Electroforming, JJAP. Vol. 41, pp. 4186, 2002
    [51] J. L. Vossen and W. Kern, “Thin Film Processes”, Academic Press, New York, 1978
    [52] Rafael Tadmor, Line Energy and the Relation between Advancing, Receding, and Young Contact Angles, Langmuir, Vol. 20, pp. 7659, 2004
    [53] 蕭志仲, 溫度對奈米尺度下接觸物體間黏滯現象之影響:分子動力學模擬及原子力顯微鏡實驗, 國立清華大學碩士論文, 2004
    [54] Y. Tian, P. Zhang, G. Liu, X. Tian, The lifetime comparison of Ni and Ni-PTFE moulding inserts with high aspect-ratio structure, Microsystem Technologies, Vol. 11, pp. 261, 2005.
    [55] C. Messmer and J.C Bilello, The surface energy of Si, GaAs, and GaP, J. Appl. Phys., Vol 52,No. 7, pp. 4623, 1981.
    [56] P.K. Chua, J.Y. Chena,b, L.P. Wanga, N. Huangb, Plasma-surface modification of biomaterials, Materials Science and Engineering, Vol. 36, pp. 143, 2002
    [57] H. Schmitt,L. Frey, H. Ryssel, M. Rommel, and C. Lehrerd UV nanoimprint materials: Surface energies, residual layers,and imprint quality, J. Vac. Sci. Technol. B, Vol. 25(1), pp. 1071, 2007
    [58] Man H. Han, Joo H. Noh, Tae I. Lee, Jai H. Choi, Ki W. Park, Hyeon S. Hwang, Kie M. Song, Hong K. Baik, High-Rate SiO2 Deposition by Oxygen Cold Arc Plasma Jet at Atmospheric Pressure, Plasma proess and polymer, Vol. 5, pp. 861, 2008
    [59] 田大昌, 黃啟貞, 場發射式歐傑電子顯微鏡(AES)微區表面化學電子能譜儀(ESCA)之簡介, 工業材料雜誌201期
    [60] 張維倫, 異向性導電膠膜與黏晶膠的機械性質與可靠度測試, 國立清華大學碩士論文, 2004
    [61] “Adhesion or Cohesion Strength of Thermal Spray Coatings.”STD. ASTM C663
    [62] Man H. Han, Joo H. Noh, Tae I. Lee, Jai H. Choi, Ki W. Park, Hyeon S. Hwang, Kie M. Song, Hong K. Baik, High-Rate SiO2 Deposition by Oxygen Cold Arc Plasma Jet at Atmospheric Pressure, Plasma Process and Polymers, Vol. 5, pp. 861, 2008
    [63] F. Schreiber, Structure and growth of self-assembling monolayers, Prog. Surf. Sci., Vol. 65, pp. 151, 2000
    [64] Yong Cheol Hong,1, Han Sup Uhm,1 and Won Ju Yi , Atmospheric pressure nitrogen plasma jet: Observation of striated multilayer discharge patterns, Applied physics, Vol. 93, pp. 051504, 2008
    [65] J Y Jeongy, S E Babayany, V J Tuy, J Parkz, I Heninsy R F Hicksyx and G S Selwynz, Etching materials with an atmospheric-pressure plasma jet, Plasma Sources Sci. Technol. Vol. 7, pp. 282, 1998
    [66] Hiroyuki Sugimura, Kazuya Ushiyama, Atsushi Hozumi,and Osamu Takai, Lateral force on fluoroalkylsilane self-assembled monolayers dependent on molecular ordering, J. Vac. Sci. Technol. B, Vol. 20(1), pp. 1071, 2002…
    [67] D. Truffier-Boutry, A. Beaurain, R. Galand, B. Pelissier, J. Boussey, M. Zelsmann, XPS study of the degradation mechanism of fluorinated anti-sticking treatments used in UV nanoimprint lithography, Microelectronic Engineering, Vol. 87, pp. 122, 2010
    [68] D. T. CLARK and D. SHUTTLEWORTH, Plasma Polymerization. 11. An ESCA Investigation of Polymers Synthesized by Excitation of Inductively Coupled RF Plasma in Perfluorobenzene and Perfluorocyclohexane, Journal of Polymer Science: Polymer Chemistry Edition, Vol. 18, pp. 27, 1980
    [69] H.T. Sahin, S. Manolache1, R.A. Young, and F. Denes, Surface fluorination of paper in CF4-RF plasma environments, Cellulose, Vol. 9, pp. 171, 2002
    [70] Cheng Cheng, Zhang Liye, and Ru-Juan Zhan, Surface modification of polymer fibre by the new atmospheric pressure cold plasma jet, Surface & Coatings Technology, Vol. 200, pp. 6659, 2006
    [71] 張家豪,魏鴻文,翁政輝,柳克強,李安平,寇崇善,吳敏文,曾錦清,蔡文發,鄭國川, 電漿源原理與應用之介紹, 物理雙月刊2006年4月
    [72] 張祥傑, IC封裝黏模力之量測與分析, 國立成功大學博士論文, 2004
    [73] N. Inagaki, Surface modification of ethylene-co-tetrafluoroethylene copolymer (ETFE) by plasma, Nuclear Instruments and Methods in Physics Research B, Vol. 208, pp. 277, 2003

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE